Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

High resolution electrochemical additive manufacturing of microstructured active materials: case study of MoSx as a catalyst for the hydrogen evolution reaction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU142034" target="_blank" >RIV/00216305:26620/21:PU142034 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/21:43920335

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2021/TA/D1TA05581J" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/TA/D1TA05581J</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d1ta05581j" target="_blank" >10.1039/d1ta05581j</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    High resolution electrochemical additive manufacturing of microstructured active materials: case study of MoSx as a catalyst for the hydrogen evolution reaction

  • Popis výsledku v původním jazyce

    High-resolution electrochemical additive manufacturing follows the principle of additive manufacturing (AM) in that new devices are constructed by electrochemically driven, localized and layered deposition of material. As for AM, an important limitation is the deposition of functional materials such as catalyst materials, which are mandatory for their incorporation into real electrochemical devices. As catalyst materials, transition metal chalcogenides attracted considerable attention due to their potential to replace platinum as a catalyst in the electrochemical hydrogen evolution reaction (HER). While considerable effort has been devoted to the preparation and engineering of 2D structures, their microstructuring is still a major challenge. Here, using MoSx as a functional material for HER catalysis as an example, we demonstrate that high-resolution electrochemical additive manufacturing leads to printing of microstructured highly active electrochemical devices. A one-step process for localized electrochemical deposition and microstructuring of MoSx with controlled chemical composition using scanning electrochemical microscopy (SECM) is demonstrated. The resulting materials were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and SECM. Practical applicability is demonstrated by large-scale printing and investigation of their performance as catalysts for energy conversion using linear sweep voltammetry. This method of high-resolution electrochemical additive fabrication of active materials will have wide application as it can be extended for the deposition of active materials on any conductive surface.

  • Název v anglickém jazyce

    High resolution electrochemical additive manufacturing of microstructured active materials: case study of MoSx as a catalyst for the hydrogen evolution reaction

  • Popis výsledku anglicky

    High-resolution electrochemical additive manufacturing follows the principle of additive manufacturing (AM) in that new devices are constructed by electrochemically driven, localized and layered deposition of material. As for AM, an important limitation is the deposition of functional materials such as catalyst materials, which are mandatory for their incorporation into real electrochemical devices. As catalyst materials, transition metal chalcogenides attracted considerable attention due to their potential to replace platinum as a catalyst in the electrochemical hydrogen evolution reaction (HER). While considerable effort has been devoted to the preparation and engineering of 2D structures, their microstructuring is still a major challenge. Here, using MoSx as a functional material for HER catalysis as an example, we demonstrate that high-resolution electrochemical additive manufacturing leads to printing of microstructured highly active electrochemical devices. A one-step process for localized electrochemical deposition and microstructuring of MoSx with controlled chemical composition using scanning electrochemical microscopy (SECM) is demonstrated. The resulting materials were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and SECM. Practical applicability is demonstrated by large-scale printing and investigation of their performance as catalysts for energy conversion using linear sweep voltammetry. This method of high-resolution electrochemical additive fabrication of active materials will have wide application as it can be extended for the deposition of active materials on any conductive surface.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Chemistry A

  • ISSN

    2050-7488

  • e-ISSN

    2050-7496

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    38

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    22072-22081

  • Kód UT WoS článku

    000697790300001

  • EID výsledku v databázi Scopus

    2-s2.0-85116678596