Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Proteinase- sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures dagger

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F19%3A43918021" target="_blank" >RIV/60461373:22310/19:43918021 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26620/19:PU133207

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlepdf/2019/nr/c9nr02754h" target="_blank" >https://pubs.rsc.org/en/content/articlepdf/2019/nr/c9nr02754h</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c9nr02754h" target="_blank" >10.1039/c9nr02754h</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Proteinase- sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures dagger

  • Popis výsledku v původním jazyce

    3D printing technologies are currently appealing for the research community due to their demonstrated versatility for different scientific applications. One of the most commonly used materials for 3D printing is polylactic acid (PLA), a biodegradable polymer that can be fully or partially digested by enzymes such as proteinase K. This work seeks to exploit PLA&apos;s biodegradability to selectively and reproducibly sculpt 3D-printed graphene/PLA surfaces to turn them into sensitive electroactive platforms. Proteinase K-catalyzed digestion of 3D-printed graphene/PLA electrodes is proposed as an environmentally friendly, highly controllable, and reproducible activation procedure of 3D-printed electrodes. Proteinase K digests PLA in a controllable fashion, exposing electroactive graphene sheets embedded within the 3D-printed structures to the solution and therefore achieving a tailorable electrode performance. A proof-of-concept biosensing application is proposed, based on the immobilization of enzyme alkaline phosphatase at the sculptured electrodes with the subsequent electrochemical detection of 1-naphthol in aqueous media. This work attempts to continue demonstrating the potential of 3D printing in electroanalytical applications, as well as to explore the exciting possibilities arising from merging biotechnological processes with these manufacturing procedures.

  • Název v anglickém jazyce

    Proteinase- sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures dagger

  • Popis výsledku anglicky

    3D printing technologies are currently appealing for the research community due to their demonstrated versatility for different scientific applications. One of the most commonly used materials for 3D printing is polylactic acid (PLA), a biodegradable polymer that can be fully or partially digested by enzymes such as proteinase K. This work seeks to exploit PLA&apos;s biodegradability to selectively and reproducibly sculpt 3D-printed graphene/PLA surfaces to turn them into sensitive electroactive platforms. Proteinase K-catalyzed digestion of 3D-printed graphene/PLA electrodes is proposed as an environmentally friendly, highly controllable, and reproducible activation procedure of 3D-printed electrodes. Proteinase K digests PLA in a controllable fashion, exposing electroactive graphene sheets embedded within the 3D-printed structures to the solution and therefore achieving a tailorable electrode performance. A proof-of-concept biosensing application is proposed, based on the immobilization of enzyme alkaline phosphatase at the sculptured electrodes with the subsequent electrochemical detection of 1-naphthol in aqueous media. This work attempts to continue demonstrating the potential of 3D printing in electroanalytical applications, as well as to explore the exciting possibilities arising from merging biotechnological processes with these manufacturing procedures.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-05421S" target="_blank" >GA17-05421S: Nové účinné membrány pro efektivní separace H2 / CO2 (HySME)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nanoscale

  • ISSN

    2040-3364

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    25

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    12124-12131

  • Kód UT WoS článku

    000475468100007

  • EID výsledku v databázi Scopus

    2-s2.0-85068212735