Compression stress strengthening modelling of a ultrafine-grained equiatomic SPS CoCrFeNiNb high-entropy alloy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43920815" target="_blank" >RIV/60461373:22310/20:43920815 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.sagepub.com/doi/10.1177/0954406220943245" target="_blank" >https://journals.sagepub.com/doi/10.1177/0954406220943245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/0954406220943245" target="_blank" >10.1177/0954406220943245</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compression stress strengthening modelling of a ultrafine-grained equiatomic SPS CoCrFeNiNb high-entropy alloy
Popis výsledku v původním jazyce
High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found. © IMechE 2020.
Název v anglickém jazyce
Compression stress strengthening modelling of a ultrafine-grained equiatomic SPS CoCrFeNiNb high-entropy alloy
Popis výsledku anglicky
High-entropy alloys are known to show exceptionally high mechanical properties, both compression and tensile strength, and unique physical properties, such as their phase stability. These quite unusual properties are primarily due to the microstructure generated by mechanical alloying processes, such as conventional induction arc melting, powder metallurgy, or mechanical alloying. In the present study, an equiatomic CoCrFeNiNb high-entropy alloy was prepared by a sequence of conventional induction melting, powder metallurgy, and compaction via spark plasma sintering. The high-entropy alloys showed uniform sub-micrometer grain microstructure consisted by a mixture of an fcc solid solution strengthened by a hcp Laves phase and a third intergranular oxide phase. The as-cast high-entropy alloys showed an ultimate compression strength (UCS) of ∼1400 MPa, which after sintering and compaction at 1273 K increased up to ∼2400 MPa. Extensive transmission electron microscopy quantitative analyses were carried out to model the UCS. A quite good agreement between the microstructure-strengthening model and the experimental UCS was found. © IMechE 2020.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
ISSN
0954-4062
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
červen
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85088402812