Atomically Thin Nanosheets Confined in 2D Heterostructures: Metal-Ion Batteries Prospective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43922145" target="_blank" >RIV/60461373:22310/21:43922145 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202100451" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.202100451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.202100451" target="_blank" >10.1002/aenm.202100451</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atomically Thin Nanosheets Confined in 2D Heterostructures: Metal-Ion Batteries Prospective
Popis výsledku v původním jazyce
Owing to the surge of energy storage devices, lithium and beyond-lithium metal ion batteries (MIBs) have gained considerable research attention. The large size and multivalent ions drastically deteriorate the performance of conventional battery electrode materials which demands unique types of structures in order to fulfill the electrode requirements of next-generation MIBs. Developing atomically thin nanosheets confined in 2D heterostructures is a favorable choice to synergistically handle the deficiencies of individual 2D materials and achieve distinct physical and electrochemical properties, retaining their 2D features. This article sheds light on the significance and characteristics of graphene-based and beyond-graphene 2D heterostructures as electrode materials in lithium-ion, sodium-ion, potassium-ion, magnesium-ion, and aluminum-ion batteries. In this regard, the pathways for the selection of 2D heterostructures electrode materials and their possible geometric configurations are first recognized. Second, the fundamental science, underlying charge storage mechanisms, and robust interfacial charge transfer processes in 2D heterostructures are discussed comprehensively in the context of recent computational studies. Third, the recent state-of-the-art experimental approaches for the fabrication of novel 2D heterostructures and their performance as anode and cathode materials for MIBs are discussed systematically. Finally, the current challenges facing 2D heterostructures and potential future research directions in the context of advanced MIBs are highlighted.
Název v anglickém jazyce
Atomically Thin Nanosheets Confined in 2D Heterostructures: Metal-Ion Batteries Prospective
Popis výsledku anglicky
Owing to the surge of energy storage devices, lithium and beyond-lithium metal ion batteries (MIBs) have gained considerable research attention. The large size and multivalent ions drastically deteriorate the performance of conventional battery electrode materials which demands unique types of structures in order to fulfill the electrode requirements of next-generation MIBs. Developing atomically thin nanosheets confined in 2D heterostructures is a favorable choice to synergistically handle the deficiencies of individual 2D materials and achieve distinct physical and electrochemical properties, retaining their 2D features. This article sheds light on the significance and characteristics of graphene-based and beyond-graphene 2D heterostructures as electrode materials in lithium-ion, sodium-ion, potassium-ion, magnesium-ion, and aluminum-ion batteries. In this regard, the pathways for the selection of 2D heterostructures electrode materials and their possible geometric configurations are first recognized. Second, the fundamental science, underlying charge storage mechanisms, and robust interfacial charge transfer processes in 2D heterostructures are discussed comprehensively in the context of recent computational studies. Third, the recent state-of-the-art experimental approaches for the fabrication of novel 2D heterostructures and their performance as anode and cathode materials for MIBs are discussed systematically. Finally, the current challenges facing 2D heterostructures and potential future research directions in the context of advanced MIBs are highlighted.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED ENERGY MATERIALS
ISSN
1614-6832
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
27
Strana od-do
—
Kód UT WoS článku
000642589400001
EID výsledku v databázi Scopus
2-s2.0-85104813583