Durability of S- and N-doped graphene nanoplatelets for electrode performance in solid-state batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43927512" target="_blank" >RIV/60461373:22310/24:43927512 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlehtml/2023/ce/d3ce01111a" target="_blank" >https://pubs.rsc.org/en/content/articlehtml/2023/ce/d3ce01111a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D3CE01111A" target="_blank" >10.1039/D3CE01111A</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Durability of S- and N-doped graphene nanoplatelets for electrode performance in solid-state batteries
Popis výsledku v původním jazyce
The main emphasis of the present Highlight paper is to summarise reported works aiming to understand the effect of sulfur and nitrogen doping on graphene nanoplatelets for high capacity electrodes in solid-state rechargeable energy storage devices. Lithium-ion batteries are considered to be one of the most promising energy storage devices which have the potential of integrating the high energy granted by lithium-ion batteries and long cycling life of supercapacitors in the same system. However, the present Li-ion batteries provide only high power density due to the low electrical conductivity of the anode materials. Moreover, there is a need to increase the capacity and kinetic imbalances between the anode and cathode by designing high-power and stable structures for the anode and cathode materials. Graphene nanoplatelets (GnPs) have been intensively explored as anode materials in lithium ion batteries due to their unique structure and outstanding electrochemical properties. The synthesis procedure, structure and electrochemical performance of such materials are discussed extensively in this manuscript
Název v anglickém jazyce
Durability of S- and N-doped graphene nanoplatelets for electrode performance in solid-state batteries
Popis výsledku anglicky
The main emphasis of the present Highlight paper is to summarise reported works aiming to understand the effect of sulfur and nitrogen doping on graphene nanoplatelets for high capacity electrodes in solid-state rechargeable energy storage devices. Lithium-ion batteries are considered to be one of the most promising energy storage devices which have the potential of integrating the high energy granted by lithium-ion batteries and long cycling life of supercapacitors in the same system. However, the present Li-ion batteries provide only high power density due to the low electrical conductivity of the anode materials. Moreover, there is a need to increase the capacity and kinetic imbalances between the anode and cathode by designing high-power and stable structures for the anode and cathode materials. Graphene nanoplatelets (GnPs) have been intensively explored as anode materials in lithium ion batteries due to their unique structure and outstanding electrochemical properties. The synthesis procedure, structure and electrochemical performance of such materials are discussed extensively in this manuscript
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2101" target="_blank" >LL2101: Příští Generace Monoelementárních 2D Materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CRYSTENGCOMM
ISSN
1466-8033
e-ISSN
1466-8033
Svazek periodika
26
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
11-26
Kód UT WoS článku
001109984400001
EID výsledku v databázi Scopus
2-s2.0-85178602649