Integration of BiOI nanosheets into bubble-propelled micromotors for efficient water purification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43922171" target="_blank" >RIV/60461373:22310/21:43922171 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2452262721000738" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2452262721000738</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.flatc.2021.100294" target="_blank" >10.1016/j.flatc.2021.100294</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integration of BiOI nanosheets into bubble-propelled micromotors for efficient water purification
Popis výsledku v původním jazyce
Integration of 2D layered materials into micromotors is of great interest for scientists since 2D materials can endow micromotors with new characteristics or enhance their intrinsic properties. In this work, we develop the BiOI-based self-propelled micromotors (i.e., rGO/ZnO/BiOI/Co-Pi/Pt micromotors) with tubular and arc geometric shapes via template-assisted electrochemical deposition method. BiOI, constructed by nanosheets, is a visible-light-excited photocatalyst. The elaborately designed heterostructure is able to promote the charge separation and transport capacity of BiOI. Each micromotor can not only exhibit vigorous stirring-like movement for self-propulsion but also lead to enhanced photocatalytic dynamics for dye degradation. Using Rhodamine 6G as the dye pollutant model, BiOI-based micromotors can degrade 94% of dye molecules within 30 min under visible light illumination while their degradation efficiency is only 5.2% when in dark. The dye degradation mechanism is mainly based on the generation of reactive oxygen species during the photocatalysis process. The synergistic effect among i) "on-the-fly" chemistry, ii) the collective behavior of micromotors and iii) the visible-light-excited BiOI photocatalyst with synthetic nanoflake morphology and well-designed heterojunction make an efficient and active photocatalytic platform for water purification.
Název v anglickém jazyce
Integration of BiOI nanosheets into bubble-propelled micromotors for efficient water purification
Popis výsledku anglicky
Integration of 2D layered materials into micromotors is of great interest for scientists since 2D materials can endow micromotors with new characteristics or enhance their intrinsic properties. In this work, we develop the BiOI-based self-propelled micromotors (i.e., rGO/ZnO/BiOI/Co-Pi/Pt micromotors) with tubular and arc geometric shapes via template-assisted electrochemical deposition method. BiOI, constructed by nanosheets, is a visible-light-excited photocatalyst. The elaborately designed heterostructure is able to promote the charge separation and transport capacity of BiOI. Each micromotor can not only exhibit vigorous stirring-like movement for self-propulsion but also lead to enhanced photocatalytic dynamics for dye degradation. Using Rhodamine 6G as the dye pollutant model, BiOI-based micromotors can degrade 94% of dye molecules within 30 min under visible light illumination while their degradation efficiency is only 5.2% when in dark. The dye degradation mechanism is mainly based on the generation of reactive oxygen species during the photocatalysis process. The synergistic effect among i) "on-the-fly" chemistry, ii) the collective behavior of micromotors and iii) the visible-light-excited BiOI photocatalyst with synthetic nanoflake morphology and well-designed heterojunction make an efficient and active photocatalytic platform for water purification.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-20201S" target="_blank" >GA20-20201S: Mikromotory na bázi 2D materiálů pro biomedicinální a environmentální aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FlatChem
ISSN
2452-2627
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
November 2021
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000710101100003
EID výsledku v databázi Scopus
—