Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CeO2 nanoparticle-modified BiOI nanoflowers as visible-light-driven heterojunction photocatalyst for tetracycline degradation and antibacterial

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930261" target="_blank" >RIV/60461373:22310/24:43930261 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352492824024383" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352492824024383</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtcomm.2024.110457" target="_blank" >10.1016/j.mtcomm.2024.110457</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CeO2 nanoparticle-modified BiOI nanoflowers as visible-light-driven heterojunction photocatalyst for tetracycline degradation and antibacterial

  • Popis výsledku v původním jazyce

    BiOI, a typical narrow-band gap visible-light-driven photocatalyst, possesses a high recombination rate of photogenerated electrons and holes, which hinders its practical application in environmental remediation. To improve its photocatalytic efficiency, BiOI/CeO2 heterojunction was designed and prepared via a facile chemical bath method. Compared to pure BiOI, the BiOI/CeO2 heterojunction not only enhanced the absorption of visible-light but also improved the separation and transfer efficiency of photogenerated carriers. Impressively, the BiOI/CeO2 heterojunction with a BiOI:CeO2 molar ratio of 2:1 (named CBOI-2) exhibited the best photocatalytic performance. The CBOI-2 heterojunction can degrade 80 % of tetracycline within 60 min, and the degradation activity was almost intact after three cycles. The reaction rate constant of CBOI-2 heterojunction was 22.1 times that of BiOI and 5.8 times that of CeO2. Moreover, CBOI-2 heterojunction behaves much better in antibacterial effect whose antibacterial efficiency reaches similar to 99.6 %. A double charge-transfer mechanism was proposed in this work and it indicated that the improved photocatalytic efficiency mainly resulted from an enhanced separation and transfer of photogenerated carriers. During the photocatalytic reaction process, superoxide radicals, hydroxyl radicals and holes were generated, which play important roles in the degradation of tetracycline and antibacterial. This work provides important insights into the design of visible-light-driven photocatalysts with high photocatalytic activity for antibiotic degradation and bacteria killing.

  • Název v anglickém jazyce

    CeO2 nanoparticle-modified BiOI nanoflowers as visible-light-driven heterojunction photocatalyst for tetracycline degradation and antibacterial

  • Popis výsledku anglicky

    BiOI, a typical narrow-band gap visible-light-driven photocatalyst, possesses a high recombination rate of photogenerated electrons and holes, which hinders its practical application in environmental remediation. To improve its photocatalytic efficiency, BiOI/CeO2 heterojunction was designed and prepared via a facile chemical bath method. Compared to pure BiOI, the BiOI/CeO2 heterojunction not only enhanced the absorption of visible-light but also improved the separation and transfer efficiency of photogenerated carriers. Impressively, the BiOI/CeO2 heterojunction with a BiOI:CeO2 molar ratio of 2:1 (named CBOI-2) exhibited the best photocatalytic performance. The CBOI-2 heterojunction can degrade 80 % of tetracycline within 60 min, and the degradation activity was almost intact after three cycles. The reaction rate constant of CBOI-2 heterojunction was 22.1 times that of BiOI and 5.8 times that of CeO2. Moreover, CBOI-2 heterojunction behaves much better in antibacterial effect whose antibacterial efficiency reaches similar to 99.6 %. A double charge-transfer mechanism was proposed in this work and it indicated that the improved photocatalytic efficiency mainly resulted from an enhanced separation and transfer of photogenerated carriers. During the photocatalytic reaction process, superoxide radicals, hydroxyl radicals and holes were generated, which play important roles in the degradation of tetracycline and antibacterial. This work provides important insights into the design of visible-light-driven photocatalysts with high photocatalytic activity for antibiotic degradation and bacteria killing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials Today Communications

  • ISSN

    2352-4928

  • e-ISSN

    2352-4928

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    December 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001320776300001

  • EID výsledku v databázi Scopus

    2-s2.0-85204290925