CeO2 nanoparticle-modified BiOI nanoflowers as visible-light-driven heterojunction photocatalyst for tetracycline degradation and antibacterial
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930261" target="_blank" >RIV/60461373:22310/24:43930261 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352492824024383" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352492824024383</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mtcomm.2024.110457" target="_blank" >10.1016/j.mtcomm.2024.110457</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CeO2 nanoparticle-modified BiOI nanoflowers as visible-light-driven heterojunction photocatalyst for tetracycline degradation and antibacterial
Popis výsledku v původním jazyce
BiOI, a typical narrow-band gap visible-light-driven photocatalyst, possesses a high recombination rate of photogenerated electrons and holes, which hinders its practical application in environmental remediation. To improve its photocatalytic efficiency, BiOI/CeO2 heterojunction was designed and prepared via a facile chemical bath method. Compared to pure BiOI, the BiOI/CeO2 heterojunction not only enhanced the absorption of visible-light but also improved the separation and transfer efficiency of photogenerated carriers. Impressively, the BiOI/CeO2 heterojunction with a BiOI:CeO2 molar ratio of 2:1 (named CBOI-2) exhibited the best photocatalytic performance. The CBOI-2 heterojunction can degrade 80 % of tetracycline within 60 min, and the degradation activity was almost intact after three cycles. The reaction rate constant of CBOI-2 heterojunction was 22.1 times that of BiOI and 5.8 times that of CeO2. Moreover, CBOI-2 heterojunction behaves much better in antibacterial effect whose antibacterial efficiency reaches similar to 99.6 %. A double charge-transfer mechanism was proposed in this work and it indicated that the improved photocatalytic efficiency mainly resulted from an enhanced separation and transfer of photogenerated carriers. During the photocatalytic reaction process, superoxide radicals, hydroxyl radicals and holes were generated, which play important roles in the degradation of tetracycline and antibacterial. This work provides important insights into the design of visible-light-driven photocatalysts with high photocatalytic activity for antibiotic degradation and bacteria killing.
Název v anglickém jazyce
CeO2 nanoparticle-modified BiOI nanoflowers as visible-light-driven heterojunction photocatalyst for tetracycline degradation and antibacterial
Popis výsledku anglicky
BiOI, a typical narrow-band gap visible-light-driven photocatalyst, possesses a high recombination rate of photogenerated electrons and holes, which hinders its practical application in environmental remediation. To improve its photocatalytic efficiency, BiOI/CeO2 heterojunction was designed and prepared via a facile chemical bath method. Compared to pure BiOI, the BiOI/CeO2 heterojunction not only enhanced the absorption of visible-light but also improved the separation and transfer efficiency of photogenerated carriers. Impressively, the BiOI/CeO2 heterojunction with a BiOI:CeO2 molar ratio of 2:1 (named CBOI-2) exhibited the best photocatalytic performance. The CBOI-2 heterojunction can degrade 80 % of tetracycline within 60 min, and the degradation activity was almost intact after three cycles. The reaction rate constant of CBOI-2 heterojunction was 22.1 times that of BiOI and 5.8 times that of CeO2. Moreover, CBOI-2 heterojunction behaves much better in antibacterial effect whose antibacterial efficiency reaches similar to 99.6 %. A double charge-transfer mechanism was proposed in this work and it indicated that the improved photocatalytic efficiency mainly resulted from an enhanced separation and transfer of photogenerated carriers. During the photocatalytic reaction process, superoxide radicals, hydroxyl radicals and holes were generated, which play important roles in the degradation of tetracycline and antibacterial. This work provides important insights into the design of visible-light-driven photocatalysts with high photocatalytic activity for antibiotic degradation and bacteria killing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Today Communications
ISSN
2352-4928
e-ISSN
2352-4928
Svazek periodika
41
Číslo periodika v rámci svazku
December 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001320776300001
EID výsledku v databázi Scopus
2-s2.0-85204290925