Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rigorous bounds, model predictions and mixture rule for the effective thermal conductivity of multiphase and porous ceramics – from theory to practice

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43923153" target="_blank" >RIV/60461373:22310/21:43923153 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rigorous bounds, model predictions and mixture rule for the effective thermal conductivity of multiphase and porous ceramics – from theory to practice

  • Popis výsledku v původním jazyce

    Thermal conductivity is a fundamental property of ceramic materials. It is in general represented by a second-order tensor and defined via Fourier’s law, which is a linear constitutive equation. It plays a major role during drying and sintering of ceramics and determines the performance of ceramics in many practical applications, ranging from electronic substrates to high-temperature thermal insulation. Together with the density, specific heat and mechanical properties it is also an important parameter for the assessment of thermal shock resistance. In heterogeneous materials, either single-phase polycrystalline or multiphase (composites), the effective thermal conductivity has to be calculated for engineering purposes via appropriate averaging or homogenization procedures. The first step in these calculations is usually the determination of the effective conductivity of the individual crystalline phases, which is performed via orientational averaging of the conductivity tensor components. Depending on the degree of orientation, the effective conductivity tensor can range from the monocrystal tensor to an isotropic tensor that represents the scalar conductivity for random orientation of crystallites. For multiphase (and porous) materials the second (and third) step is the calculation of the effective conductivity via volume averaging of the phase conductivities for given volume fractions (for statistically isotropic microstructures) and texture parameters (orientation tensors). An additional complication may arise when the phase domains (grains, inclusions, pores) are so small that the finite thickness of the interface (grain boundary or phase boundary) and the interface resistivity has to be taken into account. This chapter gives a profound and detailed summary of the rigorous bounds (Molyneux bounds for orientational averaging, multiphase Wiener and Hashin-Shtrikman bounds for volume averaging), model predictions (linear approximations and nonlinear effective medium approximations) and mixture rules (volume-weighted arithmetic, geometric, harmonic and other averages, as well as fixed- and floating-parameter weighted means) that can be used for estimating the effective thermal conductivity of single-phase, two-phase, three-phase and porous ceramics. It is emphasized that apart from the volume fraction the shape of the phase domains, mainly their surface curvature (and the aspect ratio in matrix-inclusion microstructures), is a key parameter even in statistically isotropic materials. In particular, for porous ceramics the difference between convex and concave porosity is a key point that deserves special focus in this chapter, because it is the most extreme example of a two-phase composite material and is practically important for assessing the possibilities of tailoring the thermal conductivity via microstructure control and processing (e.g. by partial sintering, pore-forming agent or foaming techniques). Interface effects and correlations to other properties, mainly elastic constants, are discussed as well, mainly because of their importance for assessing the grain size dependence of thermal conductivity. Practical examples include the comparison of analytical predictions with experimental data for real-world materials and numerical effective conductivity calculations for computer-generated model materials.

  • Název v anglickém jazyce

    Rigorous bounds, model predictions and mixture rule for the effective thermal conductivity of multiphase and porous ceramics – from theory to practice

  • Popis výsledku anglicky

    Thermal conductivity is a fundamental property of ceramic materials. It is in general represented by a second-order tensor and defined via Fourier’s law, which is a linear constitutive equation. It plays a major role during drying and sintering of ceramics and determines the performance of ceramics in many practical applications, ranging from electronic substrates to high-temperature thermal insulation. Together with the density, specific heat and mechanical properties it is also an important parameter for the assessment of thermal shock resistance. In heterogeneous materials, either single-phase polycrystalline or multiphase (composites), the effective thermal conductivity has to be calculated for engineering purposes via appropriate averaging or homogenization procedures. The first step in these calculations is usually the determination of the effective conductivity of the individual crystalline phases, which is performed via orientational averaging of the conductivity tensor components. Depending on the degree of orientation, the effective conductivity tensor can range from the monocrystal tensor to an isotropic tensor that represents the scalar conductivity for random orientation of crystallites. For multiphase (and porous) materials the second (and third) step is the calculation of the effective conductivity via volume averaging of the phase conductivities for given volume fractions (for statistically isotropic microstructures) and texture parameters (orientation tensors). An additional complication may arise when the phase domains (grains, inclusions, pores) are so small that the finite thickness of the interface (grain boundary or phase boundary) and the interface resistivity has to be taken into account. This chapter gives a profound and detailed summary of the rigorous bounds (Molyneux bounds for orientational averaging, multiphase Wiener and Hashin-Shtrikman bounds for volume averaging), model predictions (linear approximations and nonlinear effective medium approximations) and mixture rules (volume-weighted arithmetic, geometric, harmonic and other averages, as well as fixed- and floating-parameter weighted means) that can be used for estimating the effective thermal conductivity of single-phase, two-phase, three-phase and porous ceramics. It is emphasized that apart from the volume fraction the shape of the phase domains, mainly their surface curvature (and the aspect ratio in matrix-inclusion microstructures), is a key parameter even in statistically isotropic materials. In particular, for porous ceramics the difference between convex and concave porosity is a key point that deserves special focus in this chapter, because it is the most extreme example of a two-phase composite material and is practically important for assessing the possibilities of tailoring the thermal conductivity via microstructure control and processing (e.g. by partial sintering, pore-forming agent or foaming techniques). Interface effects and correlations to other properties, mainly elastic constants, are discussed as well, mainly because of their importance for assessing the grain size dependence of thermal conductivity. Practical examples include the comparison of analytical predictions with experimental data for real-world materials and numerical effective conductivity calculations for computer-generated model materials.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    20504 - Ceramics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-17899S" target="_blank" >GA18-17899S: Částečně a plně slinutá keramika - příprava, mikrostruktura, vlastnosti, modelování a teorie slinování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    An Essential Guide to Thermal Conductivity

  • ISBN

    978-1-68507-196-7

  • Počet stran výsledku

    137

  • Strana od-do

    1-137

  • Počet stran knihy

    376

  • Název nakladatele

    Nova Science Publishers, Inc.

  • Místo vydání

    New York

  • Kód UT WoS kapitoly