Heat transfer from glass melt to cold cap: Computational fluid dynamics study of cavities beneath cold cap
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F21%3A43923510" target="_blank" >RIV/60461373:22310/21:43923510 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985891:_____/21:00541193
Výsledek na webu
<a href="https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijag.15863" target="_blank" >https://ceramics.onlinelibrary.wiley.com/doi/10.1111/ijag.15863</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ijag.15863" target="_blank" >10.1111/ijag.15863</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heat transfer from glass melt to cold cap: Computational fluid dynamics study of cavities beneath cold cap
Popis výsledku v původním jazyce
Efficient glass production depends on the continuous supply of heat from the glass melt to the floating layer of batch, or cold cap. Computational fluid dynamics (CFD) are employed to investigate the formation and behavior of gas cavities that form beneath the batch by gases released from the collapsing primary foam bubbles, ascending secondary bubbles, and in the case of forced bubbling, from the rising bubbling gas. The gas phase fraction, temperature, and velocity distributions below the cold cap are used to calculate local and average heat transfer rates as a function of the bubbling rate. It is shown that the thickness of the cavities is nearly independent of the cold cap shape and the amount of foam evolved during batch conversion. It is ~7 mm and up to ~15 mm for the cases without and with forced bubbling used to promote circulation within the melt, respectively. Using computed velocity and temperature profiles, the melting rate of the simulated high-level nuclear waste glass batch was estimated to increase with the bubbling rate to the power of ~0.3 to 0.9, depending on the flow pattern. The simulation results are in good agreement with experimental data from laboratory- and pilot-scale melter tests.
Název v anglickém jazyce
Heat transfer from glass melt to cold cap: Computational fluid dynamics study of cavities beneath cold cap
Popis výsledku anglicky
Efficient glass production depends on the continuous supply of heat from the glass melt to the floating layer of batch, or cold cap. Computational fluid dynamics (CFD) are employed to investigate the formation and behavior of gas cavities that form beneath the batch by gases released from the collapsing primary foam bubbles, ascending secondary bubbles, and in the case of forced bubbling, from the rising bubbling gas. The gas phase fraction, temperature, and velocity distributions below the cold cap are used to calculate local and average heat transfer rates as a function of the bubbling rate. It is shown that the thickness of the cavities is nearly independent of the cold cap shape and the amount of foam evolved during batch conversion. It is ~7 mm and up to ~15 mm for the cases without and with forced bubbling used to promote circulation within the melt, respectively. Using computed velocity and temperature profiles, the melting rate of the simulated high-level nuclear waste glass batch was estimated to increase with the bubbling rate to the power of ~0.3 to 0.9, depending on the flow pattern. The simulation results are in good agreement with experimental data from laboratory- and pilot-scale melter tests.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-14179S" target="_blank" >GA19-14179S: In-situ analýza chování vrstvy pěny na rozhraní kmene a taveniny za použití modelové tavicí pece</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Glass Science
ISSN
2041-1286
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
233-244
Kód UT WoS článku
000604271500001
EID výsledku v databázi Scopus
2-s2.0-85099012449