One-Dimensional Cold Cap Model for Melters with Bubblers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F15%3A43900255" target="_blank" >RIV/60461373:22340/15:43900255 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1111/jace.13775/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1111/jace.13775/abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/jace.13775" target="_blank" >10.1111/jace.13775</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
One-Dimensional Cold Cap Model for Melters with Bubblers
Popis výsledku v původním jazyce
The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer ofreacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for the dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale me
Název v anglickém jazyce
One-Dimensional Cold Cap Model for Melters with Bubblers
Popis výsledku anglicky
The rate of glass production during vitrification in an all-electrical melter greatly impacts the cost and schedule of nuclear waste treatment and immobilization. The feed is charged to the melter on the top of the molten glass, where it forms a layer ofreacting and melting material, called the cold cap. During the final stages of the batch-to-glass conversion process, gases evolved from reactions produce primary foam, the growth and collapse of which controls the glass production rate. The mathematical model of the cold cap was revised to include functional representation of primary foam behavior and to account for the dry cold cap surface. The melting rate is computed as a response to the dependence of the primary foam collapse temperature on the heating rate and melter operating conditions, including the effect of bubbling on the cold cap bottom and top surface temperatures. The simulation results are in good agreement with experimental data from laboratory-scale and pilot-scale me
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CI - Průmyslová chemie a chemické inženýrství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Ceramic Society
ISSN
0002-7820
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
3112-3118
Kód UT WoS článku
000362599000022
EID výsledku v databázi Scopus
—