Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: Effects of temperature and incorporation of solid components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F20%3A00517279" target="_blank" >RIV/67985891:_____/20:00517279 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/20:43921264
Výsledek na webu
<a href="https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.16876" target="_blank" >https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.16876</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/jace.16876" target="_blank" >10.1111/jace.16876</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: Effects of temperature and incorporation of solid components
Popis výsledku v původním jazyce
During the final stages of conversion of melter feed (glass batch) to molten glass, the glass-forming melt becomes a continuous liquid phase that encapsulates dissolving solid particles and gas bubbles that produce primary foam at the bottom of the cold cap (the reacting melter feed in an electric glass-melting furnace). The glass-forming melt viscosity plays a dominant role in primary foam formation, stability, and eventual collapse, thus affecting the rate of melting (the glass production rate per cold-cap area). We have traced the glass-forming melt viscosity during the final stages of feed-to-glass conversion as it changes in response to changing temperature and composition (resulting from dissolving solid particles). For this study, we used high-level waste melter feeds-taking advantage of the large amount of data available to us-and a variety of experimental techniques (feed expansion test, evolved gas analysis, thermogravimetric analyzer-differential scanning calorimetry, X-ray diffraction, and viscometer). Starting with a relatively low value at the moment when the melt connects, melt viscosity reached maximum within the primary foam layer and then decreased to its final melter operating temperature value. At the cold-cap bottom-the boundary between the primary foam layer and the thermal boundary layer-where physicochemical reactions of a melter feed influence the driving force of the heat transfer from the melt to the cold cap, the melt viscosity affects the rate of melting predominantly through its effect on the temperature at which primary foam is collapsing.
Název v anglickém jazyce
Viscosity of glass-forming melt at the bottom of high-level waste melter-feed cold caps: Effects of temperature and incorporation of solid components
Popis výsledku anglicky
During the final stages of conversion of melter feed (glass batch) to molten glass, the glass-forming melt becomes a continuous liquid phase that encapsulates dissolving solid particles and gas bubbles that produce primary foam at the bottom of the cold cap (the reacting melter feed in an electric glass-melting furnace). The glass-forming melt viscosity plays a dominant role in primary foam formation, stability, and eventual collapse, thus affecting the rate of melting (the glass production rate per cold-cap area). We have traced the glass-forming melt viscosity during the final stages of feed-to-glass conversion as it changes in response to changing temperature and composition (resulting from dissolving solid particles). For this study, we used high-level waste melter feeds-taking advantage of the large amount of data available to us-and a variety of experimental techniques (feed expansion test, evolved gas analysis, thermogravimetric analyzer-differential scanning calorimetry, X-ray diffraction, and viscometer). Starting with a relatively low value at the moment when the melt connects, melt viscosity reached maximum within the primary foam layer and then decreased to its final melter operating temperature value. At the cold-cap bottom-the boundary between the primary foam layer and the thermal boundary layer-where physicochemical reactions of a melter feed influence the driving force of the heat transfer from the melt to the cold cap, the melt viscosity affects the rate of melting predominantly through its effect on the temperature at which primary foam is collapsing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA18075" target="_blank" >LTAUSA18075: Analýza pěnění – kritického procesu při přeměně kmene na sklo</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Ceramic Society
ISSN
0002-7820
e-ISSN
—
Svazek periodika
103
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1615-1630
Kód UT WoS článku
000495826600001
EID výsledku v databázi Scopus
2-s2.0-85075003246