Universal Capacitance Boost—Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925149" target="_blank" >RIV/60461373:22310/22:43925149 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/22:43925149
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/smtd.202201329" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/smtd.202201329</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/smtd.202201329" target="_blank" >10.1002/smtd.202201329</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Universal Capacitance Boost—Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor
Popis výsledku v původním jazyce
Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3C2, Nb2C, and V2C), coated with functional and charged organic molecules (zwitterions—ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems. © 2022 Wiley-VCH GmbH.
Název v anglickém jazyce
Universal Capacitance Boost—Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor
Popis výsledku anglicky
Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3C2, Nb2C, and V2C), coated with functional and charged organic molecules (zwitterions—ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems. © 2022 Wiley-VCH GmbH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL2101" target="_blank" >LL2101: Příští Generace Monoelementárních 2D Materiálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Small Methods
ISSN
2366-9608
e-ISSN
2366-9608
Svazek periodika
DEC 2022
Číslo periodika v rámci svazku
DEC 2022
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
2201329
Kód UT WoS článku
000899409300001
EID výsledku v databázi Scopus
2-s2.0-85144231794