Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925990" target="_blank" >RIV/60461373:22310/22:43925990 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.msec.2022.112697" target="_blank" >https://doi.org/10.1016/j.msec.2022.112697</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msec.2022.112697" target="_blank" >10.1016/j.msec.2022.112697</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity
Popis výsledku v původním jazyce
The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL−1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL−1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL−1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance. © 2022 Elsevier B.V.
Název v anglickém jazyce
Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity
Popis výsledku anglicky
The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL−1) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL−1) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL−1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance. © 2022 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomaterials Advances
ISSN
2772-9508
e-ISSN
2772-9508
Svazek periodika
134
Číslo periodika v rámci svazku
MAR 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
"112697/1"-12
Kód UT WoS článku
000811744700015
EID výsledku v databázi Scopus
2-s2.0-85130374463