Bioinspired Superhydrophobic SERS Substrates for Machine Learning Assisted miRNA Detection in Complex Biomatrix Below Femtomolar Limit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43927109" target="_blank" >RIV/60461373:22310/23:43927109 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.aca.2023.341708" target="_blank" >https://doi.org/10.1016/j.aca.2023.341708</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2023.341708" target="_blank" >10.1016/j.aca.2023.341708</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bioinspired Superhydrophobic SERS Substrates for Machine Learning Assisted miRNA Detection in Complex Biomatrix Below Femtomolar Limit
Popis výsledku v původním jazyce
Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of “minor” molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10−16 M) on the background of human blood plasma becomes possible.
Název v anglickém jazyce
Bioinspired Superhydrophobic SERS Substrates for Machine Learning Assisted miRNA Detection in Complex Biomatrix Below Femtomolar Limit
Popis výsledku anglicky
Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of “minor” molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10−16 M) on the background of human blood plasma becomes possible.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-06065S" target="_blank" >GA21-06065S: Nové funkcionalizované senzory založené na plazmonech jako nástroje pro monitorování buněk a pro pokročilé tkáňové inženýrství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analytica Chimica Acta
ISSN
0003-2670
e-ISSN
—
Svazek periodika
1278
Číslo periodika v rámci svazku
OCT 16 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
"341708/1"-24
Kód UT WoS článku
001076457700001
EID výsledku v databázi Scopus
2-s2.0-85169050550