Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bioinspired Superhydrophobic SERS Substrates for Machine Learning Assisted miRNA Detection in Complex Biomatrix Below Femtomolar Limit

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F23%3A43927109" target="_blank" >RIV/60461373:22310/23:43927109 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.aca.2023.341708" target="_blank" >https://doi.org/10.1016/j.aca.2023.341708</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aca.2023.341708" target="_blank" >10.1016/j.aca.2023.341708</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bioinspired Superhydrophobic SERS Substrates for Machine Learning Assisted miRNA Detection in Complex Biomatrix Below Femtomolar Limit

  • Popis výsledku v původním jazyce

    Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of “minor” molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10−16 M) on the background of human blood plasma becomes possible.

  • Název v anglickém jazyce

    Bioinspired Superhydrophobic SERS Substrates for Machine Learning Assisted miRNA Detection in Complex Biomatrix Below Femtomolar Limit

  • Popis výsledku anglicky

    Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of “minor” molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10−16 M) on the background of human blood plasma becomes possible.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-06065S" target="_blank" >GA21-06065S: Nové funkcionalizované senzory založené na plazmonech jako nástroje pro monitorování buněk a pro pokročilé tkáňové inženýrství</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Analytica Chimica Acta

  • ISSN

    0003-2670

  • e-ISSN

  • Svazek periodika

    1278

  • Číslo periodika v rámci svazku

    OCT 16 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    24

  • Strana od-do

    "341708/1"-24

  • Kód UT WoS článku

    001076457700001

  • EID výsledku v databázi Scopus

    2-s2.0-85169050550