Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F20%3A43921087" target="_blank" >RIV/60461373:22310/20:43921087 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/20:43921087 RIV/68407700:21230/20:00338035 RIV/00216208:11110/20:10411409
Výsledek na webu
<a href="https://doi.org/10.1016/j.snb.2020.127660" target="_blank" >https://doi.org/10.1016/j.snb.2020.127660</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.snb.2020.127660" target="_blank" >10.1016/j.snb.2020.127660</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs
Popis výsledku v původním jazyce
Combining the advanced approaches of surface functionalization and chemistry, plasmonics, surface enhanced Raman spectroscopy (SERS), and machine learning, we propose the advanced route for express and precise recognition of normal and cancer cells. Our interdisciplinary approach uses plasmonic coupling between the specific nanoparticles and underlying periodical plasmonic surface and achieves high SERS enhancement factor. The surface of gold multibranched nanoparticles (AuMs) was functionalized with different chemical groups to achieve partially selective entrapping of biomolecules from cells cultivation media and generate information-rich inputs for machine learning methods and SERS-based cells recognition. Evaluation of convolutional neural networks (CNN) training results, performed with ad hoc feature selection method, suggests that the grafted functional groups provide specificity to proteins, nucleic acids and lipids, responsible for cancer line identification. The dataset of SERS control spectra of normal and cancer cell's metabolites were classified by the trained CNN and perfectly distinguished with 100 % prediction accuracy. © 2020 Elsevier B.V.
Název v anglickém jazyce
Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs
Popis výsledku anglicky
Combining the advanced approaches of surface functionalization and chemistry, plasmonics, surface enhanced Raman spectroscopy (SERS), and machine learning, we propose the advanced route for express and precise recognition of normal and cancer cells. Our interdisciplinary approach uses plasmonic coupling between the specific nanoparticles and underlying periodical plasmonic surface and achieves high SERS enhancement factor. The surface of gold multibranched nanoparticles (AuMs) was functionalized with different chemical groups to achieve partially selective entrapping of biomolecules from cells cultivation media and generate information-rich inputs for machine learning methods and SERS-based cells recognition. Evaluation of convolutional neural networks (CNN) training results, performed with ad hoc feature selection method, suggests that the grafted functional groups provide specificity to proteins, nucleic acids and lipids, responsible for cancer line identification. The dataset of SERS control spectra of normal and cancer cell's metabolites were classified by the trained CNN and perfectly distinguished with 100 % prediction accuracy. © 2020 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors and Actuators B
ISSN
0925-4005
e-ISSN
—
Svazek periodika
308
Číslo periodika v rámci svazku
APR 1 2020
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
"127660/1"-9
Kód UT WoS článku
000511146700041
EID výsledku v databázi Scopus
2-s2.0-85077692131