SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F23%3A00567074" target="_blank" >RIV/67985823:_____/23:00567074 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/23:43925032 RIV/44555601:13440/23:43897699
Výsledek na webu
<a href="https://doi.org/10.1016/j.snb.2022.132812" target="_blank" >https://doi.org/10.1016/j.snb.2022.132812</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.snb.2022.132812" target="_blank" >10.1016/j.snb.2022.132812</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium
Popis výsledku v původním jazyce
The development of advanced methods of SERS-CNN data analysis seems to provide a perfect analytical system that is capable of solving the sophisticated task of determining the species and the behavior of microorganisms. Unlike the widely-used analytical approach, machine learning allows precise analysis even of very complex spectra of biological samples, and can provide precise decisions for a specific biochemical or microbiological task. In this article, we show for the first time the utilization of the SERS-CNN approach for remote observation of mesenchymal stem cell behavior. Our approach is based on SERS measurements of the biochemical changes taking place in the surrounding culture media due to stem cell proliferation and their biochemical activity. The cells were cultivated on various substrates supporting random or oriented cell growth, and also on „surface-toxic“ substrates. SERS-CNN analysis reveals the ability to perform „remote“ non-invasive estimation (i.e. using the surrounding medium analysis) of the degree of cell survival and the proliferation rate, using Raman measurements and advanced spectra data processing. It should be noted that the proposed approach makes it possible to analyze cell behavior without disrupting cell growth, and it can also be performed by untrained staff with the use of widely-available equipment.
Název v anglickém jazyce
SERS-CNN approach for non-invasive and non-destructive monitoring of stem cell growth on a universal substrate through an analysis of the cultivation medium
Popis výsledku anglicky
The development of advanced methods of SERS-CNN data analysis seems to provide a perfect analytical system that is capable of solving the sophisticated task of determining the species and the behavior of microorganisms. Unlike the widely-used analytical approach, machine learning allows precise analysis even of very complex spectra of biological samples, and can provide precise decisions for a specific biochemical or microbiological task. In this article, we show for the first time the utilization of the SERS-CNN approach for remote observation of mesenchymal stem cell behavior. Our approach is based on SERS measurements of the biochemical changes taking place in the surrounding culture media due to stem cell proliferation and their biochemical activity. The cells were cultivated on various substrates supporting random or oriented cell growth, and also on „surface-toxic“ substrates. SERS-CNN analysis reveals the ability to perform „remote“ non-invasive estimation (i.e. using the surrounding medium analysis) of the degree of cell survival and the proliferation rate, using Raman measurements and advanced spectra data processing. It should be noted that the proposed approach makes it possible to analyze cell behavior without disrupting cell growth, and it can also be performed by untrained staff with the use of widely-available equipment.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30404 - Biomaterials (as related to medical implants, devices, sensors)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-06065S" target="_blank" >GA21-06065S: Nové funkcionalizované senzory založené na plazmonech jako nástroje pro monitorování buněk a pro pokročilé tkáňové inženýrství</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors and Actuators B - Chemical
ISSN
0925-4005
e-ISSN
0925-4005
Svazek periodika
375
Číslo periodika v rámci svazku
15 January
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
132812
Kód UT WoS článku
000904973600005
EID výsledku v databázi Scopus
2-s2.0-85140356459