Quantitative detection of α1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43924620" target="_blank" >RIV/60461373:22310/22:43924620 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/22:10445140
Výsledek na webu
<a href="https://doi.org/10.1016/j.snb.2022.132057" target="_blank" >https://doi.org/10.1016/j.snb.2022.132057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.snb.2022.132057" target="_blank" >10.1016/j.snb.2022.132057</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantitative detection of α1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach
Popis výsledku v původním jazyce
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive tool in medical diagnostics and bioanalysis fields, aimed at the qualitative detection of relevant biomolecules. However, quantitative SERS analysis of complex (bio)samples is a more challenging and, in many cases, almost impossible task, requiring functional SERS substrates or advanced spectral data analysis. In this work, we propose the combination of a functional SERS substrate, capable of trapping target biomolecules, with CNN transfer learning for quantitative detection of the relevant α1-acid glycoprotein (AGP, also known as orosomucoid) in human serum. As a SERS substrate, the plasmonic gold grating was functionalized with boronic acid moieties to entrap target AGP. The functionality of the substrate was tested on two model solutions: a solution containing saccharides as competing molecules and human serum with added AGP, which is close to real samples. The convolution neural network (CNN) was previously trained on a huge number of (bio)samples. Then CNN transfer learning was used to quantify AGP concentration in model samples, as well as in human serum. Developed strategy is able to identify the alarming increase of AGP concentration in an express and medically decentralized way, on short time and under lack of spectral data. Generally, the proposed combination of SERS and machine transfer learning could be expanded to a range of alternative cases, where the collection of real samples is restricted and can be substituted by the measurements of similar model systems, without loss of analysis reliability. © 2022 Elsevier B.V.
Název v anglickém jazyce
Quantitative detection of α1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach
Popis výsledku anglicky
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive tool in medical diagnostics and bioanalysis fields, aimed at the qualitative detection of relevant biomolecules. However, quantitative SERS analysis of complex (bio)samples is a more challenging and, in many cases, almost impossible task, requiring functional SERS substrates or advanced spectral data analysis. In this work, we propose the combination of a functional SERS substrate, capable of trapping target biomolecules, with CNN transfer learning for quantitative detection of the relevant α1-acid glycoprotein (AGP, also known as orosomucoid) in human serum. As a SERS substrate, the plasmonic gold grating was functionalized with boronic acid moieties to entrap target AGP. The functionality of the substrate was tested on two model solutions: a solution containing saccharides as competing molecules and human serum with added AGP, which is close to real samples. The convolution neural network (CNN) was previously trained on a huge number of (bio)samples. Then CNN transfer learning was used to quantify AGP concentration in model samples, as well as in human serum. Developed strategy is able to identify the alarming increase of AGP concentration in an express and medically decentralized way, on short time and under lack of spectral data. Generally, the proposed combination of SERS and machine transfer learning could be expanded to a range of alternative cases, where the collection of real samples is restricted and can be substituted by the measurements of similar model systems, without loss of analysis reliability. © 2022 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors and Actuators B
ISSN
0925-4005
e-ISSN
—
Svazek periodika
367
Číslo periodika v rámci svazku
SEP 15 2022
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
"132057/1"-8
Kód UT WoS článku
000807805200004
EID výsledku v databázi Scopus
2-s2.0-85130582189