Label-free SERS-ML detection of cocaine trace in human blood plasma
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929378" target="_blank" >RIV/60461373:22310/24:43929378 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/24:43929378
Výsledek na webu
<a href="https://doi.org/10.1016/j.jhazmat.2024.134525" target="_blank" >https://doi.org/10.1016/j.jhazmat.2024.134525</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhazmat.2024.134525" target="_blank" >10.1016/j.jhazmat.2024.134525</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Label-free SERS-ML detection of cocaine trace in human blood plasma
Popis výsledku v původním jazyce
The widespread consumption of cocaine poses a significant threat to modern society. The most effective way to combat this problem is to control the distribution of cocaine, based on its accurate and sensitive detection. Here, we proposed the detection of cocaine in human blood plasma using a combination of surface enhanced Raman spectroscopy and machine learning (SERS-ML). To demonstrate the efficacy of our proposed approach, cocaine was added into blood plasma at various concentrations and drop-deposited onto a specially prepared disposable SERS substrate. SERS substrates were created by deposition of metal nanoclusters on electrospun polymer nanofibers. Subsequently, SERS spectra were measured and as could be expected, the manual distinguishing of cocaine from the spectra proved unfeasible, as its signal was masked by the background signal from blood plasma molecules. To overcome this issue, a database of SERS spectra of cocaine in blood plasma was collected and used for ML training and validation. After training, the reliability of proposed approach was tested on independently prepared samples, with unknown for SERS-ML cocaine presence or absence. As a result, the possibility of rapid determination of cocaine in blood plasma with a probability above 99.5% for cocaine concentrations up to 10-14 M was confirmed. Therefore, it is evident that the proposed approach has the ability to detect trace amounts of cocaine in bioliquids in an express and simple manner.
Název v anglickém jazyce
Label-free SERS-ML detection of cocaine trace in human blood plasma
Popis výsledku anglicky
The widespread consumption of cocaine poses a significant threat to modern society. The most effective way to combat this problem is to control the distribution of cocaine, based on its accurate and sensitive detection. Here, we proposed the detection of cocaine in human blood plasma using a combination of surface enhanced Raman spectroscopy and machine learning (SERS-ML). To demonstrate the efficacy of our proposed approach, cocaine was added into blood plasma at various concentrations and drop-deposited onto a specially prepared disposable SERS substrate. SERS substrates were created by deposition of metal nanoclusters on electrospun polymer nanofibers. Subsequently, SERS spectra were measured and as could be expected, the manual distinguishing of cocaine from the spectra proved unfeasible, as its signal was masked by the background signal from blood plasma molecules. To overcome this issue, a database of SERS spectra of cocaine in blood plasma was collected and used for ML training and validation. After training, the reliability of proposed approach was tested on independently prepared samples, with unknown for SERS-ML cocaine presence or absence. As a result, the possibility of rapid determination of cocaine in blood plasma with a probability above 99.5% for cocaine concentrations up to 10-14 M was confirmed. Therefore, it is evident that the proposed approach has the ability to detect trace amounts of cocaine in bioliquids in an express and simple manner.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ01010065" target="_blank" >VJ01010065: Expresní a portativní detekce zakázaných sloučenin s použitím inovativních technik: flexibilní a chirální SERS, selektivní povrchová extrakce, neuronové sítě.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF HAZARDOUS MATERIALS
ISSN
0304-3894
e-ISSN
1873-3336
Svazek periodika
472
Číslo periodika v rámci svazku
JUL 5 2024
Stát vydavatele periodika
ZA - Jihoafrická republika
Počet stran výsledku
9
Strana od-do
"134525/1"-9
Kód UT WoS článku
001242262400001
EID výsledku v databázi Scopus
2-s2.0-85192806154