Temperature-dependent elasticity of DNA, RNA, and hybrid double helices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929607" target="_blank" >RIV/60461373:22310/24:43929607 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0006349524000730" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0006349524000730</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bpj.2024.01.032" target="_blank" >10.1016/j.bpj.2024.01.032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Temperature-dependent elasticity of DNA, RNA, and hybrid double helices
Popis výsledku v původním jazyce
Nucleic acid double helices in their DNA, RNA, and DNA -RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist -stretch coupling for DNA, RNA, and hybrid duplexes between 7 degrees C and 47 degrees C. The results are based on all -atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist -stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/degrees C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/degrees C, and smaller values are found for the other elastic moduli. The twist -stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two -state model of DNA flexibility is discussed. Our work provides temperature -dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.
Název v anglickém jazyce
Temperature-dependent elasticity of DNA, RNA, and hybrid double helices
Popis výsledku anglicky
Nucleic acid double helices in their DNA, RNA, and DNA -RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist -stretch coupling for DNA, RNA, and hybrid duplexes between 7 degrees C and 47 degrees C. The results are based on all -atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist -stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/degrees C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/degrees C, and smaller values are found for the other elastic moduli. The twist -stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two -state model of DNA flexibility is discussed. Our work provides temperature -dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BIOPHYSICAL JOURNAL
ISSN
0006-3495
e-ISSN
1542-0086
Svazek periodika
123
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
572-583
Kód UT WoS článku
001208499500001
EID výsledku v databázi Scopus
2-s2.0-85184779105