Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Temperature-dependent elasticity of DNA, RNA, and hybrid double helices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929607" target="_blank" >RIV/60461373:22310/24:43929607 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0006349524000730" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0006349524000730</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bpj.2024.01.032" target="_blank" >10.1016/j.bpj.2024.01.032</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Temperature-dependent elasticity of DNA, RNA, and hybrid double helices

  • Popis výsledku v původním jazyce

    Nucleic acid double helices in their DNA, RNA, and DNA -RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist -stretch coupling for DNA, RNA, and hybrid duplexes between 7 degrees C and 47 degrees C. The results are based on all -atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist -stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/degrees C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/degrees C, and smaller values are found for the other elastic moduli. The twist -stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two -state model of DNA flexibility is discussed. Our work provides temperature -dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.

  • Název v anglickém jazyce

    Temperature-dependent elasticity of DNA, RNA, and hybrid double helices

  • Popis výsledku anglicky

    Nucleic acid double helices in their DNA, RNA, and DNA -RNA hybrid form play a fundamental role in biology and are main building blocks of artificial nanostructures, but how their properties depend on temperature remains poorly understood. Here, we report thermal dependence of dynamic bending persistence length, twist rigidity, stretch modulus, and twist -stretch coupling for DNA, RNA, and hybrid duplexes between 7 degrees C and 47 degrees C. The results are based on all -atom molecular dynamics simulations using different force field parameterizations. We first demonstrate that unrestrained molecular dynamics can reproduce experimentally known mechanical properties of the duplexes at room temperature. Beyond experimentally known features, we also infer the twist rigidity and twist -stretch coupling of the hybrid duplex. As for the temperature dependence, we found that increasing temperature softens all the duplexes with respect to bending, twisting, and stretching. The relative decrease of the stretch moduli is 0.003-0.004/degrees C, similar for all the duplex variants despite their very different stretching stiffness, whereas RNA twist stiffness decreases by 0.003/degrees C, and smaller values are found for the other elastic moduli. The twist -stretch couplings are nearly unaffected by temperature. The stretching, bending, and twisting stiffness all include an important entropic component. Relation of our results to the two -state model of DNA flexibility is discussed. Our work provides temperature -dependent elasticity of nucleic acid duplexes at the microsecond scale relevant for initial stages of protein binding.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10610 - Biophysics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BIOPHYSICAL JOURNAL

  • ISSN

    0006-3495

  • e-ISSN

    1542-0086

  • Svazek periodika

    123

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    572-583

  • Kód UT WoS článku

    001208499500001

  • EID výsledku v databázi Scopus

    2-s2.0-85184779105