Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929988" target="_blank" >RIV/60461373:22310/24:43929988 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2452262724001120" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2452262724001120</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.flatc.2024.100718" target="_blank" >10.1016/j.flatc.2024.100718</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis
Popis výsledku v původním jazyce
Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications. © 2024
Název v anglickém jazyce
Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis
Popis výsledku anglicky
Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications. © 2024
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FlatChem
ISSN
2452-2627
e-ISSN
2452-2627
Svazek periodika
47
Číslo periodika v rámci svazku
September 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85199789613