Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43929988" target="_blank" >RIV/60461373:22310/24:43929988 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2452262724001120" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2452262724001120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.flatc.2024.100718" target="_blank" >10.1016/j.flatc.2024.100718</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis

  • Popis výsledku v původním jazyce

    Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications. © 2024

  • Název v anglickém jazyce

    Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis

  • Popis výsledku anglicky

    Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications. © 2024

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FlatChem

  • ISSN

    2452-2627

  • e-ISSN

    2452-2627

  • Svazek periodika

    47

  • Číslo periodika v rámci svazku

    September 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85199789613