Harnessing Ti3C2-WS2 nanostructures as efficient energy scaffoldings for photocatalytic hydrogen generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930001" target="_blank" >RIV/60461373:22310/24:43930001 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2589234724003002" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2589234724003002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.mtsust.2024.100964" target="_blank" >10.1016/j.mtsust.2024.100964</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Harnessing Ti3C2-WS2 nanostructures as efficient energy scaffoldings for photocatalytic hydrogen generation
Popis výsledku v původním jazyce
Two-dimensional (2D) Ti3C2 MXene have attracted a lot of attention as frontier materials for the development of effective photocatalysts that can transform solar energy into chemical energy, which is essential for water splitting to produce hydrogen. Here, we use first principle calculations to understand the structural, electronic, and vibrational features of a novel heterostructure comprising a monolayer of tungsten disulfide (WS2) and titanium carbide (Ti3C2) MXene. Our theoretical calculations revealed that the Ti3C2 maximizes the interfacial contact area with the WS2 monolayer creating a strong p-d hybridization for the WS2/Ti3C2 heterostructure. As a result, a well-constructed Schottky junction is enabled, facilitating an interconnected electron pathway across the interface which is conducive for an efficient photocatalytic performance. Further, the experimentally designed WS2/Ti3C2 heterostructure and its photocatalytic activity based on the synergistic action between MXene and WS2 is investigated. Optical properties calculated are compared with experimental data derived from UV-Visible spectroscopy. The excellent conductivity and stability along with the light absorption in the visible region of WS2/Ti3C2 enhances the photocatalytic performance approaching photocurrent densities of similar to 33 and 120 mu A/cm(2) in the HER and OER region, respectively. Overall, the present research not only improves our understanding of WS2/Ti3C2 heterostructure for an improved photocatalytic activity, but also provides an efficient method toward sustainable hydrogen production.
Název v anglickém jazyce
Harnessing Ti3C2-WS2 nanostructures as efficient energy scaffoldings for photocatalytic hydrogen generation
Popis výsledku anglicky
Two-dimensional (2D) Ti3C2 MXene have attracted a lot of attention as frontier materials for the development of effective photocatalysts that can transform solar energy into chemical energy, which is essential for water splitting to produce hydrogen. Here, we use first principle calculations to understand the structural, electronic, and vibrational features of a novel heterostructure comprising a monolayer of tungsten disulfide (WS2) and titanium carbide (Ti3C2) MXene. Our theoretical calculations revealed that the Ti3C2 maximizes the interfacial contact area with the WS2 monolayer creating a strong p-d hybridization for the WS2/Ti3C2 heterostructure. As a result, a well-constructed Schottky junction is enabled, facilitating an interconnected electron pathway across the interface which is conducive for an efficient photocatalytic performance. Further, the experimentally designed WS2/Ti3C2 heterostructure and its photocatalytic activity based on the synergistic action between MXene and WS2 is investigated. Optical properties calculated are compared with experimental data derived from UV-Visible spectroscopy. The excellent conductivity and stability along with the light absorption in the visible region of WS2/Ti3C2 enhances the photocatalytic performance approaching photocurrent densities of similar to 33 and 120 mu A/cm(2) in the HER and OER region, respectively. Overall, the present research not only improves our understanding of WS2/Ti3C2 heterostructure for an improved photocatalytic activity, but also provides an efficient method toward sustainable hydrogen production.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Today Sustainability
ISSN
2589-2347
e-ISSN
2589-2347
Svazek periodika
28
Číslo periodika v rámci svazku
December 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001314241600001
EID výsledku v databázi Scopus
2-s2.0-85203433087