Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Harnessing Ti3C2-WS2 nanostructures as efficient energy scaffoldings for photocatalytic hydrogen generation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930001" target="_blank" >RIV/60461373:22310/24:43930001 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2589234724003002" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2589234724003002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mtsust.2024.100964" target="_blank" >10.1016/j.mtsust.2024.100964</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Harnessing Ti3C2-WS2 nanostructures as efficient energy scaffoldings for photocatalytic hydrogen generation

  • Popis výsledku v původním jazyce

    Two-dimensional (2D) Ti3C2 MXene have attracted a lot of attention as frontier materials for the development of effective photocatalysts that can transform solar energy into chemical energy, which is essential for water splitting to produce hydrogen. Here, we use first principle calculations to understand the structural, electronic, and vibrational features of a novel heterostructure comprising a monolayer of tungsten disulfide (WS2) and titanium carbide (Ti3C2) MXene. Our theoretical calculations revealed that the Ti3C2 maximizes the interfacial contact area with the WS2 monolayer creating a strong p-d hybridization for the WS2/Ti3C2 heterostructure. As a result, a well-constructed Schottky junction is enabled, facilitating an interconnected electron pathway across the interface which is conducive for an efficient photocatalytic performance. Further, the experimentally designed WS2/Ti3C2 heterostructure and its photocatalytic activity based on the synergistic action between MXene and WS2 is investigated. Optical properties calculated are compared with experimental data derived from UV-Visible spectroscopy. The excellent conductivity and stability along with the light absorption in the visible region of WS2/Ti3C2 enhances the photocatalytic performance approaching photocurrent densities of similar to 33 and 120 mu A/cm(2) in the HER and OER region, respectively. Overall, the present research not only improves our understanding of WS2/Ti3C2 heterostructure for an improved photocatalytic activity, but also provides an efficient method toward sustainable hydrogen production.

  • Název v anglickém jazyce

    Harnessing Ti3C2-WS2 nanostructures as efficient energy scaffoldings for photocatalytic hydrogen generation

  • Popis výsledku anglicky

    Two-dimensional (2D) Ti3C2 MXene have attracted a lot of attention as frontier materials for the development of effective photocatalysts that can transform solar energy into chemical energy, which is essential for water splitting to produce hydrogen. Here, we use first principle calculations to understand the structural, electronic, and vibrational features of a novel heterostructure comprising a monolayer of tungsten disulfide (WS2) and titanium carbide (Ti3C2) MXene. Our theoretical calculations revealed that the Ti3C2 maximizes the interfacial contact area with the WS2 monolayer creating a strong p-d hybridization for the WS2/Ti3C2 heterostructure. As a result, a well-constructed Schottky junction is enabled, facilitating an interconnected electron pathway across the interface which is conducive for an efficient photocatalytic performance. Further, the experimentally designed WS2/Ti3C2 heterostructure and its photocatalytic activity based on the synergistic action between MXene and WS2 is investigated. Optical properties calculated are compared with experimental data derived from UV-Visible spectroscopy. The excellent conductivity and stability along with the light absorption in the visible region of WS2/Ti3C2 enhances the photocatalytic performance approaching photocurrent densities of similar to 33 and 120 mu A/cm(2) in the HER and OER region, respectively. Overall, the present research not only improves our understanding of WS2/Ti3C2 heterostructure for an improved photocatalytic activity, but also provides an efficient method toward sustainable hydrogen production.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials Today Sustainability

  • ISSN

    2589-2347

  • e-ISSN

    2589-2347

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    December 2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    001314241600001

  • EID výsledku v databázi Scopus

    2-s2.0-85203433087