Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930489" target="_blank" >RIV/60461373:22310/24:43930489 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22330/24:43930489

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.aca.2024.343118" target="_blank" >https://doi.org/10.1016/j.aca.2024.343118</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aca.2024.343118" target="_blank" >10.1016/j.aca.2024.343118</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid

  • Popis výsledku v původním jazyce

    Background: Antibiotic resistance stands as a critical medical concern, notably evident in commonly prescribed beta-lactam antibiotics. The imperative need for expeditious and precise early detection methods underscores their role in facilitating timely intervention, curbing the propagation of antibiotic resistance, and enhancing patient outcomes. Results: This study introduces the utilization of surface-enhanced Raman spectroscopy (SERS) in tandem with machine learning (ML) for the sensitive detection of characteristic gene fragments responsible for antibiotic resistance appearance and spreading. To make the detection procedure close to the real case, we used bacterial plasmids as starting biological objects, containing or not the characteristic gene fragment (up to 1:10 ratio), encoding beta-lactam antibiotics resistance. The plasmids were subjected to enzymatic digestion and without preliminary purification or isolation the created fragments were captured by functional SERS substrates. Based on subsequent SERS measurements, a database was created for the training and validation of ML. Method validation was performed using separately measured spectra, which did not overlap with the database used for ML training. To check the efficiency of recognising the target fragment, control experiments involved bacterial plasmids containing different resistance genes, the use of inappropriate enzymes, or the absence of plasmid. Significance: SERS-ML allowed express detection of bacterial plasmids containing a characteristic gene fragment up to the 10(-7)concentration- 7 concentration of the initial plasmid, despite the complex composition of the biological sample, including the presence of interfering plasmids. Our approach offers a promising alternative to existing methods for monitoring antibiotic-resistant bacteria, characterized by its simplicity, low detection limit, and the potential for rapid and straightforward analysis.

  • Název v anglickém jazyce

    Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid

  • Popis výsledku anglicky

    Background: Antibiotic resistance stands as a critical medical concern, notably evident in commonly prescribed beta-lactam antibiotics. The imperative need for expeditious and precise early detection methods underscores their role in facilitating timely intervention, curbing the propagation of antibiotic resistance, and enhancing patient outcomes. Results: This study introduces the utilization of surface-enhanced Raman spectroscopy (SERS) in tandem with machine learning (ML) for the sensitive detection of characteristic gene fragments responsible for antibiotic resistance appearance and spreading. To make the detection procedure close to the real case, we used bacterial plasmids as starting biological objects, containing or not the characteristic gene fragment (up to 1:10 ratio), encoding beta-lactam antibiotics resistance. The plasmids were subjected to enzymatic digestion and without preliminary purification or isolation the created fragments were captured by functional SERS substrates. Based on subsequent SERS measurements, a database was created for the training and validation of ML. Method validation was performed using separately measured spectra, which did not overlap with the database used for ML training. To check the efficiency of recognising the target fragment, control experiments involved bacterial plasmids containing different resistance genes, the use of inappropriate enzymes, or the absence of plasmid. Significance: SERS-ML allowed express detection of bacterial plasmids containing a characteristic gene fragment up to the 10(-7)concentration- 7 concentration of the initial plasmid, despite the complex composition of the biological sample, including the presence of interfering plasmids. Our approach offers a promising alternative to existing methods for monitoring antibiotic-resistant bacteria, characterized by its simplicity, low detection limit, and the potential for rapid and straightforward analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Analytica Chimica Acta

  • ISSN

    0003-2670

  • e-ISSN

    1873-4324

  • Svazek periodika

    1329

  • Číslo periodika v rámci svazku

    NOV 15 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    "343118/1"-9

  • Kód UT WoS článku

    001310777800001

  • EID výsledku v databázi Scopus

    2-s2.0-85202856308