Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930489" target="_blank" >RIV/60461373:22310/24:43930489 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/24:43930489
Výsledek na webu
<a href="https://doi.org/10.1016/j.aca.2024.343118" target="_blank" >https://doi.org/10.1016/j.aca.2024.343118</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2024.343118" target="_blank" >10.1016/j.aca.2024.343118</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid
Popis výsledku v původním jazyce
Background: Antibiotic resistance stands as a critical medical concern, notably evident in commonly prescribed beta-lactam antibiotics. The imperative need for expeditious and precise early detection methods underscores their role in facilitating timely intervention, curbing the propagation of antibiotic resistance, and enhancing patient outcomes. Results: This study introduces the utilization of surface-enhanced Raman spectroscopy (SERS) in tandem with machine learning (ML) for the sensitive detection of characteristic gene fragments responsible for antibiotic resistance appearance and spreading. To make the detection procedure close to the real case, we used bacterial plasmids as starting biological objects, containing or not the characteristic gene fragment (up to 1:10 ratio), encoding beta-lactam antibiotics resistance. The plasmids were subjected to enzymatic digestion and without preliminary purification or isolation the created fragments were captured by functional SERS substrates. Based on subsequent SERS measurements, a database was created for the training and validation of ML. Method validation was performed using separately measured spectra, which did not overlap with the database used for ML training. To check the efficiency of recognising the target fragment, control experiments involved bacterial plasmids containing different resistance genes, the use of inappropriate enzymes, or the absence of plasmid. Significance: SERS-ML allowed express detection of bacterial plasmids containing a characteristic gene fragment up to the 10(-7)concentration- 7 concentration of the initial plasmid, despite the complex composition of the biological sample, including the presence of interfering plasmids. Our approach offers a promising alternative to existing methods for monitoring antibiotic-resistant bacteria, characterized by its simplicity, low detection limit, and the potential for rapid and straightforward analysis.
Název v anglickém jazyce
Surface enhanced Raman spectroscopy and machine learning for identification of beta-lactam antibiotics resistance gene fragment in bacterial plasmid
Popis výsledku anglicky
Background: Antibiotic resistance stands as a critical medical concern, notably evident in commonly prescribed beta-lactam antibiotics. The imperative need for expeditious and precise early detection methods underscores their role in facilitating timely intervention, curbing the propagation of antibiotic resistance, and enhancing patient outcomes. Results: This study introduces the utilization of surface-enhanced Raman spectroscopy (SERS) in tandem with machine learning (ML) for the sensitive detection of characteristic gene fragments responsible for antibiotic resistance appearance and spreading. To make the detection procedure close to the real case, we used bacterial plasmids as starting biological objects, containing or not the characteristic gene fragment (up to 1:10 ratio), encoding beta-lactam antibiotics resistance. The plasmids were subjected to enzymatic digestion and without preliminary purification or isolation the created fragments were captured by functional SERS substrates. Based on subsequent SERS measurements, a database was created for the training and validation of ML. Method validation was performed using separately measured spectra, which did not overlap with the database used for ML training. To check the efficiency of recognising the target fragment, control experiments involved bacterial plasmids containing different resistance genes, the use of inappropriate enzymes, or the absence of plasmid. Significance: SERS-ML allowed express detection of bacterial plasmids containing a characteristic gene fragment up to the 10(-7)concentration- 7 concentration of the initial plasmid, despite the complex composition of the biological sample, including the presence of interfering plasmids. Our approach offers a promising alternative to existing methods for monitoring antibiotic-resistant bacteria, characterized by its simplicity, low detection limit, and the potential for rapid and straightforward analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analytica Chimica Acta
ISSN
0003-2670
e-ISSN
1873-4324
Svazek periodika
1329
Číslo periodika v rámci svazku
NOV 15 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
"343118/1"-9
Kód UT WoS článku
001310777800001
EID výsledku v databázi Scopus
2-s2.0-85202856308