SERS and advanced chemometrics - Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F22%3A43925042" target="_blank" >RIV/60461373:22310/22:43925042 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/22:43925042 RIV/60461373:22340/22:43925042 RIV/00216208:11320/22:10452098
Výsledek na webu
<a href="https://doi.org/10.1016/j.aca.2021.339373" target="_blank" >https://doi.org/10.1016/j.aca.2021.339373</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2021.339373" target="_blank" >10.1016/j.aca.2021.339373</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SERS and advanced chemometrics - Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment
Popis výsledku v původním jazyce
The enormous development and expansion of antibiotic-resistant bacterial strains impel the intensive search for new methods for fast and reliable detection of antibiotic susceptibility markers. Here, we combined DNA-targeted surface functionalization, surface-enhanced Raman spectroscopy (SERS) measurements, and subsequent spectra processing by decision system (DS) for detection of a specific oligonucleotide (ODN) sequence identical to a fragment of blaNDM-1 gene, responsible for beta-lactam antibiotic resistance. The SERS signal was measured on plasmonic gold grating, functionalized with capture ODN, ensuring the binding of corresponded ODNs. Designed DS consists of a Siamese neural network (SNN) coupled with robust statistics and Bayes decision theory. The proposed approach allows manipulation with complex multicomponent samples and predefine the desired detection level of confidence and errors, automatically determining the number of required spectra and samples. In constant to commonly used classification-type SNN, our method was applied to analyze samples with compositions previously "unknown" to DS. The detection of targeted ODN was performed with >= 99% level of confidence up to 3 x 10(-12) M limit on the background of 10(-10) M concentration of similar but not targeted ODNs. (C) 2021 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
SERS and advanced chemometrics - Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment
Popis výsledku anglicky
The enormous development and expansion of antibiotic-resistant bacterial strains impel the intensive search for new methods for fast and reliable detection of antibiotic susceptibility markers. Here, we combined DNA-targeted surface functionalization, surface-enhanced Raman spectroscopy (SERS) measurements, and subsequent spectra processing by decision system (DS) for detection of a specific oligonucleotide (ODN) sequence identical to a fragment of blaNDM-1 gene, responsible for beta-lactam antibiotic resistance. The SERS signal was measured on plasmonic gold grating, functionalized with capture ODN, ensuring the binding of corresponded ODNs. Designed DS consists of a Siamese neural network (SNN) coupled with robust statistics and Bayes decision theory. The proposed approach allows manipulation with complex multicomponent samples and predefine the desired detection level of confidence and errors, automatically determining the number of required spectra and samples. In constant to commonly used classification-type SNN, our method was applied to analyze samples with compositions previously "unknown" to DS. The detection of targeted ODN was performed with >= 99% level of confidence up to 3 x 10(-12) M limit on the background of 10(-10) M concentration of similar but not targeted ODNs. (C) 2021 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-06065S" target="_blank" >GA21-06065S: Nové funkcionalizované senzory založené na plazmonech jako nástroje pro monitorování buněk a pro pokročilé tkáňové inženýrství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Analytica Chimica Acta
ISSN
0003-2670
e-ISSN
—
Svazek periodika
1192
Číslo periodika v rámci svazku
FEB 1 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
"339373/1"-9
Kód UT WoS článku
000735770400006
EID výsledku v databázi Scopus
—