The prediction of WWTP influent characteristics: Good practices and challenges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22320%2F22%3A43924650" target="_blank" >RIV/60461373:22320/22:43924650 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2214714422004536" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2214714422004536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jwpe.2022.103009" target="_blank" >10.1016/j.jwpe.2022.103009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The prediction of WWTP influent characteristics: Good practices and challenges
Popis výsledku v původním jazyce
The prediction of influent characteristics using state-of-the-art mathematical models can help optimize wastewater treatment plants (WWTP) processes. However, WWTP operators lack experience with such models and the historical data necessary for their calibration; thus mathematical models for inflow prediction are barely used in practice. On the other hand, the scientific community has recently made great strides in developing predictive modeling approaches for estimating inflow quantity and quality. This review paper compares existing models based on the dataset used, modeling approach and targeted application. Due to the significant differences in data resolution used for calibration and variable mathematical approaches, it is impossible to define one universally correct modeling approach. Besides machine learning approaches such as ANN, hybrid modeling approaches are also capable of good approximations of water and wastewater treatment processes. Moreover, this review evaluated the accuracy and robustness of predictive models used in specific situations. To bridge the theory-to-practice gap, existing models need to be connected with real-time data transfer.
Název v anglickém jazyce
The prediction of WWTP influent characteristics: Good practices and challenges
Popis výsledku anglicky
The prediction of influent characteristics using state-of-the-art mathematical models can help optimize wastewater treatment plants (WWTP) processes. However, WWTP operators lack experience with such models and the historical data necessary for their calibration; thus mathematical models for inflow prediction are barely used in practice. On the other hand, the scientific community has recently made great strides in developing predictive modeling approaches for estimating inflow quantity and quality. This review paper compares existing models based on the dataset used, modeling approach and targeted application. Due to the significant differences in data resolution used for calibration and variable mathematical approaches, it is impossible to define one universally correct modeling approach. Besides machine learning approaches such as ANN, hybrid modeling approaches are also capable of good approximations of water and wastewater treatment processes. Moreover, this review evaluated the accuracy and robustness of predictive models used in specific situations. To bridge the theory-to-practice gap, existing models need to be connected with real-time data transfer.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20801 - Environmental biotechnology
Návaznosti výsledku
Projekt
<a href="/cs/project/SS01020210" target="_blank" >SS01020210: Využití cloud-computingu a prediktivní analýzy odpadní vody za účelem snížení emisí do vodního ekosystému</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Water Process Engineering
ISSN
2214-7144
e-ISSN
—
Svazek periodika
49
Číslo periodika v rámci svazku
103009
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
nestrankovano
Kód UT WoS článku
000866142500009
EID výsledku v databázi Scopus
—