Nonlinear vs. linear biasing in Trp-cage folding simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F15%3A43899754" target="_blank" >RIV/60461373:22330/15:43899754 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14610/15:00080979
Výsledek na webu
<a href="http://scitation.aip.org/content/aip/journal/jcp/142/11/10.1063/1.4914828" target="_blank" >http://scitation.aip.org/content/aip/journal/jcp/142/11/10.1063/1.4914828</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4914828" target="_blank" >10.1063/1.4914828</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinear vs. linear biasing in Trp-cage folding simulations
Popis výsledku v původním jazyce
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionalityreduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In ter
Název v anglickém jazyce
Nonlinear vs. linear biasing in Trp-cage folding simulations
Popis výsledku anglicky
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionalityreduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In ter
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CE - Biochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Svazek periodika
142
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
115101
Kód UT WoS článku
000351530100042
EID výsledku v databázi Scopus
—