Adhesion of Megasphaera cerevisiae onto solid surfaces mimicking materials used in breweries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F17%3A43913162" target="_blank" >RIV/60461373:22330/17:43913162 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/17:43892932 RIV/60193697:_____/17:N0000036
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/jib.415/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/jib.415/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jib.415" target="_blank" >10.1002/jib.415</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adhesion of Megasphaera cerevisiae onto solid surfaces mimicking materials used in breweries
Popis výsledku v původním jazyce
Developments in filling technologies have led to a reduction in oxygen content in beer, thus producing an anaerobic environment suitable for the growth of anaerobic beer-spoiling microorganisms. Anaerobic bacteria survive well in a biofilm that provides protection against environmental stress factors. The initial step in biofilm formation is adhesion of cells to a solid surface. Therefore the purpose of this research was to study theoretically and experimentally adhesion of strains of Megasphaera cerevisiae to different solid surfaces with roperties covering a wide range of materials used in breweries. Experimental characterization of surface properties was used to model surface interactions, resulting in a quantitative prediction of cell adhesion. The colloidal model predictions were then compared with adhesion tests. As revealed experimentally, the most significant adhesion occurred to 3-aminopropyltriethoxysilane-modified glass (substitute for stainless steel) at pH 3?7. According to physicochemical interaction models, under these conditions interactions were influenced mostly by electrostatic attractions between surfaces. At pH 3, experimental data, supported by theoretical predictions, showed significant bacterial adhesion to borosilicate glass (a hydrophilic surface) and propyltriethoxysilane-modified glass (a hydrophobic surface). Conversely, the least adhesion of M. cerevisiae was both predicted and observed at pH 10, since at an alkaline pH, electrostatic repulsion between surfaces predominates. Since adhesion can be expectedmainly at an acidic pH, prevention should be based on the use of alkaline cleaning agents and/or alkaline rinse water at the end of the cleaning procedure. An elevated risk of adhesion to stainless steel was also identified, allowing appropriate measures to be taken.
Název v anglickém jazyce
Adhesion of Megasphaera cerevisiae onto solid surfaces mimicking materials used in breweries
Popis výsledku anglicky
Developments in filling technologies have led to a reduction in oxygen content in beer, thus producing an anaerobic environment suitable for the growth of anaerobic beer-spoiling microorganisms. Anaerobic bacteria survive well in a biofilm that provides protection against environmental stress factors. The initial step in biofilm formation is adhesion of cells to a solid surface. Therefore the purpose of this research was to study theoretically and experimentally adhesion of strains of Megasphaera cerevisiae to different solid surfaces with roperties covering a wide range of materials used in breweries. Experimental characterization of surface properties was used to model surface interactions, resulting in a quantitative prediction of cell adhesion. The colloidal model predictions were then compared with adhesion tests. As revealed experimentally, the most significant adhesion occurred to 3-aminopropyltriethoxysilane-modified glass (substitute for stainless steel) at pH 3?7. According to physicochemical interaction models, under these conditions interactions were influenced mostly by electrostatic attractions between surfaces. At pH 3, experimental data, supported by theoretical predictions, showed significant bacterial adhesion to borosilicate glass (a hydrophilic surface) and propyltriethoxysilane-modified glass (a hydrophobic surface). Conversely, the least adhesion of M. cerevisiae was both predicted and observed at pH 10, since at an alkaline pH, electrostatic repulsion between surfaces predominates. Since adhesion can be expectedmainly at an acidic pH, prevention should be based on the use of alkaline cleaning agents and/or alkaline rinse water at the end of the cleaning procedure. An elevated risk of adhesion to stainless steel was also identified, allowing appropriate measures to be taken.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21101 - Food and beverages
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015073" target="_blank" >LM2015073: Nanomateriály a nanotechnologie pro ochranu životního prostředí a udržitelnou budoucnost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the Institute of Brewing
ISSN
0046-9750
e-ISSN
—
Svazek periodika
123
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
204-210
Kód UT WoS článku
000405297800005
EID výsledku v databázi Scopus
—