Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F20%3A43920852" target="_blank" >RIV/60461373:22330/20:43920852 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/20:43920852
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fmolb.2020.00132/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fmolb.2020.00132/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmolb.2020.00132" target="_blank" >10.3389/fmolb.2020.00132</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories
Popis výsledku v původním jazyce
Molecular simulation trajectories represent high-dimensional data. Such data can be visualized by methods of dimensionality reduction. Non-linear dimensionality reduction methods are likely to be more efficient than linear ones due to the fact that motions of atoms are non-linear. Here we test a popular non-linear t-distributed Stochastic Neighbor Embedding (t-SNE) method on analysis of trajectories of 200 ns alanine dipeptide dynamics and 208 μs Trp-cage folding and unfolding. Furthermore, we introduce a time-lagged variant of t-SNE in order to focus on rarely occurring transitions in the molecular system. This time-lagged t-SNE efficiently separates states according to distance in time. Using this method it is possible to visualize key states of studied systems (e.g., unfolded and folded protein) as well as possible kinetic traps using a two-dimensional plot. Time-lagged t-SNE is a visualization method and other applications, such as clustering and free energy modeling, must be done with caution.
Název v anglickém jazyce
Time-lagged t-distributed stochastic neighbor embedding (t-SNE) of molecular simulation trajectories
Popis výsledku anglicky
Molecular simulation trajectories represent high-dimensional data. Such data can be visualized by methods of dimensionality reduction. Non-linear dimensionality reduction methods are likely to be more efficient than linear ones due to the fact that motions of atoms are non-linear. Here we test a popular non-linear t-distributed Stochastic Neighbor Embedding (t-SNE) method on analysis of trajectories of 200 ns alanine dipeptide dynamics and 208 μs Trp-cage folding and unfolding. Furthermore, we introduce a time-lagged variant of t-SNE in order to focus on rarely occurring transitions in the molecular system. This time-lagged t-SNE efficiently separates states according to distance in time. Using this method it is possible to visualize key states of studied systems (e.g., unfolded and folded protein) as well as possible kinetic traps using a two-dimensional plot. Time-lagged t-SNE is a visualization method and other applications, such as clustering and free energy modeling, must be done with caution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Molecular Biosciences
ISSN
2296-889X
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
"132-1"-"132-8"
Kód UT WoS článku
000555944200001
EID výsledku v databázi Scopus
2-s2.0-85087831668