Efficiency of the t-distribution stochastic neighbor embedding technique for detailed visualization and modeling interactions between agricultural soil quality indicators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41210%2F21%3A85810" target="_blank" >RIV/60460709:41210/21:85810 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1537511021002178?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1537511021002178?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.biosystemseng.2021.08.033" target="_blank" >10.1016/j.biosystemseng.2021.08.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficiency of the t-distribution stochastic neighbor embedding technique for detailed visualization and modeling interactions between agricultural soil quality indicators
Popis výsledku v původním jazyce
Dimensionality reduction is important for revealing important details that may be useful in decision making. Although different dimensionality reduction methods have been applied in several soil based studies, Kohonen self-organizing map neural network (KSOM-NN) has attracted significant attention from researchers because of the quality of data visualization and interpretation. However, there is a dearth of studies that compare KSOM-NN and other robust data reduction techniques such as the t distribution stochastic neighbor embedding (t-SNE) method to improve visualization and interpretation of the relationships between soil quality indicators in agricultural soil. This study compares the above mentioned methods for characterizing soil quality indicators including particle size distribution, soil organic matter SOM, cation exchange capacity CEC, soil reaction pH, electrical conductivity EC, zinc Zn, iron Fe, manganese Mn, potassium K and phosphorus P in agricultural dryland. There were strongly posit
Název v anglickém jazyce
Efficiency of the t-distribution stochastic neighbor embedding technique for detailed visualization and modeling interactions between agricultural soil quality indicators
Popis výsledku anglicky
Dimensionality reduction is important for revealing important details that may be useful in decision making. Although different dimensionality reduction methods have been applied in several soil based studies, Kohonen self-organizing map neural network (KSOM-NN) has attracted significant attention from researchers because of the quality of data visualization and interpretation. However, there is a dearth of studies that compare KSOM-NN and other robust data reduction techniques such as the t distribution stochastic neighbor embedding (t-SNE) method to improve visualization and interpretation of the relationships between soil quality indicators in agricultural soil. This study compares the above mentioned methods for characterizing soil quality indicators including particle size distribution, soil organic matter SOM, cation exchange capacity CEC, soil reaction pH, electrical conductivity EC, zinc Zn, iron Fe, manganese Mn, potassium K and phosphorus P in agricultural dryland. There were strongly posit
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40104 - Soil science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biosystems Engineering
ISSN
1537-5110
e-ISSN
1537-5129
Svazek periodika
210
Číslo periodika v rámci svazku
oct
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
282-298
Kód UT WoS článku
000697667200004
EID výsledku v databázi Scopus
2-s2.0-85114776197