Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigating the impact of spectral data pre-processing to assess honey botanical origin through Fourier transform infrared spectroscopy (FTIR)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22330%2F23%3A43926146" target="_blank" >RIV/60461373:22330/23:43926146 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jfca.2023.105276" target="_blank" >https://doi.org/10.1016/j.jfca.2023.105276</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfca.2023.105276" target="_blank" >10.1016/j.jfca.2023.105276</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigating the impact of spectral data pre-processing to assess honey botanical origin through Fourier transform infrared spectroscopy (FTIR)

  • Popis výsledku v původním jazyce

    Honey botanical origin is a parameter affecting its market price as certain origins are related to special organoleptic properties or potential health benefits attracting consumers’ attention. However, identifying honey botanical origin is a challenging task commonly requiring extensive high-end analysis. In this study, to address this challenge, a rapid and non-distractive attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) method was developed and special focus was paid on the spectral data pre-processing and its effect on the performance of chemometric models. Twenty-two different pre-processing methods were tested, namely, scatter correction methods, spectral derivation methods and their combinations. In each occasion, both supervised and non-supervised tools were implemented and the cross-validation parameters were used as an indicator on the efficient projection of fifty-one (n = 51) honey samples originating from 5 different botanical origins (blossom, honeydew, cotton, thyme, citrus). Importantly, combining multiplicative scatter correction followed by Savitzky-Golay first derivation is suggested as the most efficient data pre-processing method. Eventually, this data pre-processing was applied in binary models acquiring excellent recognition (87–100%) and prediction (81–100%) ability. In conclusion, the presented method set light on the undermined effect of spectral data pre-processing before the application of advanced chemometrics. © 2023 Elsevier Inc.

  • Název v anglickém jazyce

    Investigating the impact of spectral data pre-processing to assess honey botanical origin through Fourier transform infrared spectroscopy (FTIR)

  • Popis výsledku anglicky

    Honey botanical origin is a parameter affecting its market price as certain origins are related to special organoleptic properties or potential health benefits attracting consumers’ attention. However, identifying honey botanical origin is a challenging task commonly requiring extensive high-end analysis. In this study, to address this challenge, a rapid and non-distractive attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) method was developed and special focus was paid on the spectral data pre-processing and its effect on the performance of chemometric models. Twenty-two different pre-processing methods were tested, namely, scatter correction methods, spectral derivation methods and their combinations. In each occasion, both supervised and non-supervised tools were implemented and the cross-validation parameters were used as an indicator on the efficient projection of fifty-one (n = 51) honey samples originating from 5 different botanical origins (blossom, honeydew, cotton, thyme, citrus). Importantly, combining multiplicative scatter correction followed by Savitzky-Golay first derivation is suggested as the most efficient data pre-processing method. Eventually, this data pre-processing was applied in binary models acquiring excellent recognition (87–100%) and prediction (81–100%) ability. In conclusion, the presented method set light on the undermined effect of spectral data pre-processing before the application of advanced chemometrics. © 2023 Elsevier Inc.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40500 - Other agricultural sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Food Composition and Analysis

  • ISSN

    0889-1575

  • e-ISSN

    1096-0481

  • Svazek periodika

    119

  • Číslo periodika v rámci svazku

    JUN 2023

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000955796600001

  • EID výsledku v databázi Scopus

    2-s2.0-85149823008