Feature Analysis of EEG Signals using SOM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F10%3A00023394" target="_blank" >RIV/60461373:22340/10:00023394 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature Analysis of EEG Signals using SOM
Popis výsledku v původním jazyce
The electroencephalogram (EEG) represents an efficient technique to measure and record brain electrical activity. The most common use of EEG includes the monitoring and diagnosis of the brain states and their disorders. It is based on the search of characteristic patterns in EEG signals and their evaluation. In terms of signal processing it uses feature analysis, more specifically feature extraction and classification of signal components. The paper deals with the feature study of EEG signals by the self-organizing neural network (SOM). The SOM is an unsupervised method using a neighborhood function to preserve the topological properties of the input space. Resulting algorithm was implemented in MATLAB with many optional parameters that provide possibility to adjust the model to user's requirements. The graphical user interface was designed as well. General problems of feature analysis, such as extraction of appropriate characteristic features or evaluation of quality of clusters, were
Název v anglickém jazyce
Feature Analysis of EEG Signals using SOM
Popis výsledku anglicky
The electroencephalogram (EEG) represents an efficient technique to measure and record brain electrical activity. The most common use of EEG includes the monitoring and diagnosis of the brain states and their disorders. It is based on the search of characteristic patterns in EEG signals and their evaluation. In terms of signal processing it uses feature analysis, more specifically feature extraction and classification of signal components. The paper deals with the feature study of EEG signals by the self-organizing neural network (SOM). The SOM is an unsupervised method using a neighborhood function to preserve the topological properties of the input space. Resulting algorithm was implemented in MATLAB with many optional parameters that provide possibility to adjust the model to user's requirements. The graphical user interface was designed as well. General problems of feature analysis, such as extraction of appropriate characteristic features or evaluation of quality of clusters, were
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
18th Annual Conference Proceedings technical Computing Bratislava 2010
ISBN
978-80-970519-0-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
RT Systems
Místo vydání
Bratislava
Místo konání akce
Bratislava
Datum konání akce
1. 1. 2010
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—