Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Realization theory of Nash systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F13%3A43895256" target="_blank" >RIV/60461373:22340/13:43895256 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Realization theory of Nash systems

  • Popis výsledku v původním jazyce

    This paper deals with realization theory of so-called Nash systems, i.e., nonlinear systems the right-hand sides of which are defined by Nash functions. A Nash function is a semialgebraic analytic function. The class of Nash systems is an extension of the class of polynomial and rational systems and it is a subclass of analytic nonlinear systems. Nash systems occur in many applications, including systems biology. Formulation of the realization problem for Nash systems and a partial solution to it are presented. More precisely, necessary and sufficient conditions for realizability of a response map by a Nash system are provided. The concepts of semialgebraic observability and semialgebraic reachability are formulated and their relationship with minimality is explained. In addition to their importance for systems theory, the obtained results are expected to contribute to system identification and model reduction of Nash systems.

  • Název v anglickém jazyce

    Realization theory of Nash systems

  • Popis výsledku anglicky

    This paper deals with realization theory of so-called Nash systems, i.e., nonlinear systems the right-hand sides of which are defined by Nash functions. A Nash function is a semialgebraic analytic function. The class of Nash systems is an extension of the class of polynomial and rational systems and it is a subclass of analytic nonlinear systems. Nash systems occur in many applications, including systems biology. Formulation of the realization problem for Nash systems and a partial solution to it are presented. More precisely, necessary and sufficient conditions for realizability of a response map by a Nash system are provided. The concepts of semialgebraic observability and semialgebraic reachability are formulated and their relationship with minimality is explained. In addition to their importance for systems theory, the obtained results are expected to contribute to system identification and model reduction of Nash systems.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GP13-16764P" target="_blank" >GP13-16764P: Pozorovatelnost semi-algebraických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM JOURNAL ON CONTROL AND OPTIMIZATION

  • ISSN

    0363-0129

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    3386-3414

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus