Realization theory of Nash systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F13%3A43895256" target="_blank" >RIV/60461373:22340/13:43895256 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Realization theory of Nash systems
Popis výsledku v původním jazyce
This paper deals with realization theory of so-called Nash systems, i.e., nonlinear systems the right-hand sides of which are defined by Nash functions. A Nash function is a semialgebraic analytic function. The class of Nash systems is an extension of the class of polynomial and rational systems and it is a subclass of analytic nonlinear systems. Nash systems occur in many applications, including systems biology. Formulation of the realization problem for Nash systems and a partial solution to it are presented. More precisely, necessary and sufficient conditions for realizability of a response map by a Nash system are provided. The concepts of semialgebraic observability and semialgebraic reachability are formulated and their relationship with minimality is explained. In addition to their importance for systems theory, the obtained results are expected to contribute to system identification and model reduction of Nash systems.
Název v anglickém jazyce
Realization theory of Nash systems
Popis výsledku anglicky
This paper deals with realization theory of so-called Nash systems, i.e., nonlinear systems the right-hand sides of which are defined by Nash functions. A Nash function is a semialgebraic analytic function. The class of Nash systems is an extension of the class of polynomial and rational systems and it is a subclass of analytic nonlinear systems. Nash systems occur in many applications, including systems biology. Formulation of the realization problem for Nash systems and a partial solution to it are presented. More precisely, necessary and sufficient conditions for realizability of a response map by a Nash system are provided. The concepts of semialgebraic observability and semialgebraic reachability are formulated and their relationship with minimality is explained. In addition to their importance for systems theory, the obtained results are expected to contribute to system identification and model reduction of Nash systems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP13-16764P" target="_blank" >GP13-16764P: Pozorovatelnost semi-algebraických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON CONTROL AND OPTIMIZATION
ISSN
0363-0129
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
3386-3414
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—