Stability and Performance Verification of Dynamical Systems Controlled by Neural Networks: Algorithms and Complexity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00360191" target="_blank" >RIV/68407700:21230/22:00360191 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LCSYS.2022.3181806" target="_blank" >https://doi.org/10.1109/LCSYS.2022.3181806</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LCSYS.2022.3181806" target="_blank" >10.1109/LCSYS.2022.3181806</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stability and Performance Verification of Dynamical Systems Controlled by Neural Networks: Algorithms and Complexity
Popis výsledku v původním jazyce
This letter makes several contributions on stability and performance verification of nonlinear dynamical systems controlled by neural networks. First, we show that the stability and performance of a polynomial dynamical system controlled by a neural network with semialgebraically representable activation functions (e.g., ReLU) can be certified by convex semidefinite programming. The result is based on the fact that the semialgebraic representation of the activation functions and polynomial dynamics allows one to search for a Lyapunov function using polynomial sum-of-squares methods. Second, we remark that even in the case of a linear system controlled by a neural network with ReLU activation functions, the problem of verifying asymptotic stability is undecidable. Finally, under additional assumptions, we establish a converse result on the existence of a polynomial Lyapunov function for this class of systems. Numerical results with code available online on examples of state-space dimension up to 50 and neural networks with several hundred neurons and up to 30 layers demonstrate the method.
Název v anglickém jazyce
Stability and Performance Verification of Dynamical Systems Controlled by Neural Networks: Algorithms and Complexity
Popis výsledku anglicky
This letter makes several contributions on stability and performance verification of nonlinear dynamical systems controlled by neural networks. First, we show that the stability and performance of a polynomial dynamical system controlled by a neural network with semialgebraically representable activation functions (e.g., ReLU) can be certified by convex semidefinite programming. The result is based on the fact that the semialgebraic representation of the activation functions and polynomial dynamics allows one to search for a Lyapunov function using polynomial sum-of-squares methods. Second, we remark that even in the case of a linear system controlled by a neural network with ReLU activation functions, the problem of verifying asymptotic stability is undecidable. Finally, under additional assumptions, we establish a converse result on the existence of a polynomial Lyapunov function for this class of systems. Numerical results with code available online on examples of state-space dimension up to 50 and neural networks with several hundred neurons and up to 30 layers demonstrate the method.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koncept Koopmanova operátoru pro řízení komplexních nelineárních dynamických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Control Systems Letters
ISSN
2475-1456
e-ISSN
2475-1456
Svazek periodika
6
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
3265-3270
Kód UT WoS článku
000819822000002
EID výsledku v databázi Scopus
2-s2.0-85132740353