Construction and Optimization of Stability Conditions of Learning Processes in Mathematical Models of Neurodynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU150350" target="_blank" >RIV/00216305:26220/22:PU150350 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Construction and Optimization of Stability Conditions of Learning Processes in Mathematical Models of Neurodynamics
Popis výsledku v původním jazyce
This article is devoted to dynamic processes in the field of artificial intelligence, namely in the tasks of neurodynamics: the field of knowledge in which neural networks are considered as nonlinear dynamical systems and focuses on the problem of stability. The systems under consideration share four common characteristics: a large number of nodes (neurons), nonlinearity, dissipativity, noise. The purpose of this work is to build to construct of asymptotic stability conditions for dynamic model of neuronet network, which is described in terms of ODE nonlinear systems. Main method of investigation is Lyapunov direct method. Authors show that solution of pointed problem can be reduced to the task of convex optimization. By realization on Python tools the algorithm of Nelder-Mead method, a number of numerical experiments were conducted to select the optimal parameters of the Lyapunov function.
Název v anglickém jazyce
Construction and Optimization of Stability Conditions of Learning Processes in Mathematical Models of Neurodynamics
Popis výsledku anglicky
This article is devoted to dynamic processes in the field of artificial intelligence, namely in the tasks of neurodynamics: the field of knowledge in which neural networks are considered as nonlinear dynamical systems and focuses on the problem of stability. The systems under consideration share four common characteristics: a large number of nodes (neurons), nonlinearity, dissipativity, noise. The purpose of this work is to build to construct of asymptotic stability conditions for dynamic model of neuronet network, which is described in terms of ODE nonlinear systems. Main method of investigation is Lyapunov direct method. Authors show that solution of pointed problem can be reduced to the task of convex optimization. By realization on Python tools the algorithm of Nelder-Mead method, a number of numerical experiments were conducted to select the optimal parameters of the Lyapunov function.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
9th International Scientific Conference "Information Technology and Implementation"
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
CEUR-WS
Místo vydání
neuveden
Místo konání akce
Kyiv
Datum konání akce
30. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—