Automated Analysis of Microscopic Images of Isolated Pancreatic Islets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F16%3A43901595" target="_blank" >RIV/60461373:22340/16:43901595 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/16:00465945 RIV/68407700:21230/16:00304584 RIV/00023001:_____/16:00060180
Výsledek na webu
<a href="http://docserver.ingentaconnect.com.ezproxy.vscht.cz/deliver/connect/cog/09636897/v25n12/s5.pdf?expires=1486165890&id=89827820&titleid=5476&accname=Institute+of+Chemical+Technology%2C+Prague&checksum=42223F3A4B4E1B81746F54F2DC1FF32A" target="_blank" >http://docserver.ingentaconnect.com.ezproxy.vscht.cz/deliver/connect/cog/09636897/v25n12/s5.pdf?expires=1486165890&id=89827820&titleid=5476&accname=Institute+of+Chemical+Technology%2C+Prague&checksum=42223F3A4B4E1B81746F54F2DC1FF32A</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3727/096368916X692005" target="_blank" >10.3727/096368916X692005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Analysis of Microscopic Images of Isolated Pancreatic Islets
Popis výsledku v původním jazyce
Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. Current computer-assisted methods require input from human operators. Here, we describe two machine learning algorithms for islet quantification, the trainable islet algorithm (TIA) and the non-trainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method. The TIA is intended to automatically evaluate micrographs of isolated islets from future donors, after being trained on micrographs from a limited number of past donors. Its training ability was first evaluated on 46 images from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA concentration indicated that the TIA was successfully trained, regardless of the color differences of the original images. Next, the TIA trained on the four donors was validated on an additional 36 images from nine independent donors. The TIA was fast (67 sec/image), correlated very well with the FMS method (R2 = 1.00 and 0.92 for islet volume and islet count, respectively), and had small REs (0.06 and 0.07 for islet volume and islet count, respectively). Validation of the NPA against the EVA method using 70 images from 12 donors revealed that the NPA had a reasonable speed (69 sec/image), an acceptable RE (0.14), and correlated well with the EVA method (R2 = 0.88). Our results demonstrate that a fully automated analysis of clinical-grade micrographs of isolated pancreatic islets is feasible. The algorithms described herein will be freely available as a Fiji platform plugin.
Název v anglickém jazyce
Automated Analysis of Microscopic Images of Isolated Pancreatic Islets
Popis výsledku anglicky
Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. Current computer-assisted methods require input from human operators. Here, we describe two machine learning algorithms for islet quantification, the trainable islet algorithm (TIA) and the non-trainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method. The TIA is intended to automatically evaluate micrographs of isolated islets from future donors, after being trained on micrographs from a limited number of past donors. Its training ability was first evaluated on 46 images from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA concentration indicated that the TIA was successfully trained, regardless of the color differences of the original images. Next, the TIA trained on the four donors was validated on an additional 36 images from nine independent donors. The TIA was fast (67 sec/image), correlated very well with the FMS method (R2 = 1.00 and 0.92 for islet volume and islet count, respectively), and had small REs (0.06 and 0.07 for islet volume and islet count, respectively). Validation of the NPA against the EVA method using 70 images from 12 donors revealed that the NPA had a reasonable speed (69 sec/image), an acceptable RE (0.14), and correlated well with the EVA method (R2 = 0.88). Our results demonstrate that a fully automated analysis of clinical-grade micrographs of isolated pancreatic islets is feasible. The algorithms described herein will be freely available as a Fiji platform plugin.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cell Transplantation
ISSN
0963-6897
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2145-2156
Kód UT WoS článku
000390183200005
EID výsledku v databázi Scopus
2-s2.0-85007086435