Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated Analysis of Microscopic Images of Isolated Pancreatic Islets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F16%3A43901595" target="_blank" >RIV/60461373:22340/16:43901595 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/16:00465945 RIV/68407700:21230/16:00304584 RIV/00023001:_____/16:00060180

  • Výsledek na webu

    <a href="http://docserver.ingentaconnect.com.ezproxy.vscht.cz/deliver/connect/cog/09636897/v25n12/s5.pdf?expires=1486165890&id=89827820&titleid=5476&accname=Institute+of+Chemical+Technology%2C+Prague&checksum=42223F3A4B4E1B81746F54F2DC1FF32A" target="_blank" >http://docserver.ingentaconnect.com.ezproxy.vscht.cz/deliver/connect/cog/09636897/v25n12/s5.pdf?expires=1486165890&id=89827820&titleid=5476&accname=Institute+of+Chemical+Technology%2C+Prague&checksum=42223F3A4B4E1B81746F54F2DC1FF32A</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3727/096368916X692005" target="_blank" >10.3727/096368916X692005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated Analysis of Microscopic Images of Isolated Pancreatic Islets

  • Popis výsledku v původním jazyce

    Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. Current computer-assisted methods require input from human operators. Here, we describe two machine learning algorithms for islet quantification, the trainable islet algorithm (TIA) and the non-trainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method. The TIA is intended to automatically evaluate micrographs of isolated islets from future donors, after being trained on micrographs from a limited number of past donors. Its training ability was first evaluated on 46 images from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA concentration indicated that the TIA was successfully trained, regardless of the color differences of the original images. Next, the TIA trained on the four donors was validated on an additional 36 images from nine independent donors. The TIA was fast (67 sec/image), correlated very well with the FMS method (R2 = 1.00 and 0.92 for islet volume and islet count, respectively), and had small REs (0.06 and 0.07 for islet volume and islet count, respectively). Validation of the NPA against the EVA method using 70 images from 12 donors revealed that the NPA had a reasonable speed (69 sec/image), an acceptable RE (0.14), and correlated well with the EVA method (R2 = 0.88). Our results demonstrate that a fully automated analysis of clinical-grade micrographs of isolated pancreatic islets is feasible. The algorithms described herein will be freely available as a Fiji platform plugin.

  • Název v anglickém jazyce

    Automated Analysis of Microscopic Images of Isolated Pancreatic Islets

  • Popis výsledku anglicky

    Clinical islet transplantation programs rely on the capacities of individual centers to quantify isolated islets. Current computer-assisted methods require input from human operators. Here, we describe two machine learning algorithms for islet quantification, the trainable islet algorithm (TIA) and the non-trainable purity algorithm (NPA). These algorithms automatically segment pancreatic islets and exocrine tissue on microscopic images in order to count individual islets and calculate islet volume and purity. References for islet counts and volumes were generated by the fully manual segmentation (FMS) method, which was validated against the internal DNA standard. References for islet purity were generated via the expert visual assessment (EVA) method, which was validated against the FMS method. The TIA is intended to automatically evaluate micrographs of isolated islets from future donors, after being trained on micrographs from a limited number of past donors. Its training ability was first evaluated on 46 images from four donors. The pixel-to-pixel comparison, binary statistics, and islet DNA concentration indicated that the TIA was successfully trained, regardless of the color differences of the original images. Next, the TIA trained on the four donors was validated on an additional 36 images from nine independent donors. The TIA was fast (67 sec/image), correlated very well with the FMS method (R2 = 1.00 and 0.92 for islet volume and islet count, respectively), and had small REs (0.06 and 0.07 for islet volume and islet count, respectively). Validation of the NPA against the EVA method using 70 images from 12 donors revealed that the NPA had a reasonable speed (69 sec/image), an acceptable RE (0.14), and correlated well with the EVA method (R2 = 0.88). Our results demonstrate that a fully automated analysis of clinical-grade micrographs of isolated pancreatic islets is feasible. The algorithms described herein will be freely available as a Fiji platform plugin.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Cell Transplantation

  • ISSN

    0963-6897

  • e-ISSN

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2145-2156

  • Kód UT WoS článku

    000390183200005

  • EID výsledku v databázi Scopus

    2-s2.0-85007086435