Assessment of a Novel Trainable Algorithm for Automated Segmentation of Multiple Islet Images.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00217904" target="_blank" >RIV/68407700:21230/14:00217904 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of a Novel Trainable Algorithm for Automated Segmentation of Multiple Islet Images.
Popis výsledku v původním jazyce
Accurate sampling of islet graft suspension is confounded by the islet size heterogeneity. Assessment of multiple samples is advisable. Current islet counting methods remain time- and labour-intensive. We tested precision of automated assessment of multiple islet images by a simple learning algorithm. We generated the ground truth upon which a trainable algorithm was developed. The ground truth consisted of 12 islet images manually segmented in triplicates by four experienced operators using the gray-level thresholding. Next, training of Linear Perceptron algorithm (features = RGB) on individual images generated automatic classifiers, which in turn were used to assess islet images (dithizone-stained human islets with 40% exocrine tissue). The areas assigned to individual islets were converted to the islet equivalents (IE) using extended Ricordi table, d=2sqrt(area/ pi). The first twelve images were segmented in triplicates by four experienced operators using manual thresholding. The co
Název v anglickém jazyce
Assessment of a Novel Trainable Algorithm for Automated Segmentation of Multiple Islet Images.
Popis výsledku anglicky
Accurate sampling of islet graft suspension is confounded by the islet size heterogeneity. Assessment of multiple samples is advisable. Current islet counting methods remain time- and labour-intensive. We tested precision of automated assessment of multiple islet images by a simple learning algorithm. We generated the ground truth upon which a trainable algorithm was developed. The ground truth consisted of 12 islet images manually segmented in triplicates by four experienced operators using the gray-level thresholding. Next, training of Linear Perceptron algorithm (features = RGB) on individual images generated automatic classifiers, which in turn were used to assess islet images (dithizone-stained human islets with 40% exocrine tissue). The areas assigned to individual islets were converted to the islet equivalents (IE) using extended Ricordi table, d=2sqrt(area/ pi). The first twelve images were segmented in triplicates by four experienced operators using manual thresholding. The co
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F11%2F0111" target="_blank" >GAP202/11/0111: Automatická analýza obrazů nervové tkáně ze světelné a elektronové mikroskopie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů