Edge-Guided Image Gap Interpolation Using Multi-Scale Transformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F16%3A43901643" target="_blank" >RIV/60461373:22340/16:43901643 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/16:00306283
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7511757/" target="_blank" >http://ieeexplore.ieee.org/document/7511757/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIP.2016.2590825" target="_blank" >10.1109/TIP.2016.2590825</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge-Guided Image Gap Interpolation Using Multi-Scale Transformation
Popis výsledku v původním jazyce
This paper presents improvements in image gap restoration through the incorporation of edge-based directional interpolation within multi-scale pyramid transforms. Two types of image edges are reconstructed: 1) the local edges or textures, inferred from the gradients of the neighboring pixels and 2) the global edges between image objects or segments, inferred using a Canny detector. Through a process of pyramid transformation and downsampling, the image is progressively transformed into a series of reduced size layers until at the pyramid apex the gap size is one sample. At each layer, an edge skeleton image is extracted for edge-guided interpolation. The process is then reversed; from the apex, at each layer, the missing samples are estimated (an iterative method is used in the last stage of upsampling), up-sampled, and combined with the available samples of the next layer. Discrete cosine transform and a family of discrete wavelet transforms are utilized as alternatives for pyramid construction. Evaluations over a range of images, in regular and random loss pattern, at loss rates of up to 40%, demonstrate that the proposed method improves peak-signal-to-noise-ratio by 1-5 dB compared with a range of best published works.
Název v anglickém jazyce
Edge-Guided Image Gap Interpolation Using Multi-Scale Transformation
Popis výsledku anglicky
This paper presents improvements in image gap restoration through the incorporation of edge-based directional interpolation within multi-scale pyramid transforms. Two types of image edges are reconstructed: 1) the local edges or textures, inferred from the gradients of the neighboring pixels and 2) the global edges between image objects or segments, inferred using a Canny detector. Through a process of pyramid transformation and downsampling, the image is progressively transformed into a series of reduced size layers until at the pyramid apex the gap size is one sample. At each layer, an edge skeleton image is extracted for edge-guided interpolation. The process is then reversed; from the apex, at each layer, the missing samples are estimated (an iterative method is used in the last stage of upsampling), up-sampled, and combined with the available samples of the next layer. Discrete cosine transform and a family of discrete wavelet transforms are utilized as alternatives for pyramid construction. Evaluations over a range of images, in regular and random loss pattern, at loss rates of up to 40%, demonstrate that the proposed method improves peak-signal-to-noise-ratio by 1-5 dB compared with a range of best published works.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Image Processing
ISSN
1057-7149
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
4394-4405
Kód UT WoS článku
000381436200008
EID výsledku v databázi Scopus
2-s2.0-84984868165