Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A comparison of the correlation functions of the Lennard-Jones fluid for the first-order Duh-Haymet-Henderson closure with molecular simulations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F17%3A43914857" target="_blank" >RIV/60461373:22340/17:43914857 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.tandfonline.com/doi/full/10.1080/00268976.2017.1292011" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/00268976.2017.1292011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/00268976.2017.1292011" target="_blank" >10.1080/00268976.2017.1292011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A comparison of the correlation functions of the Lennard-Jones fluid for the first-order Duh-Haymet-Henderson closure with molecular simulations

  • Popis výsledku v původním jazyce

    First-order integral equation theories are much more computationally efficient than second-order theories, but the latter are usually much more accurate for computing correlation functions of fluids. We here test the accuracy of the Duh-Haymet-Henderson (DHH) integral equation theory by comparing radial distribution, cavity correlation and bridge functions computed from DHH, first-order and second-order Percus-Yevick theories, with molecular dynamics calculations for the Lennard-Jones fluid. We find that the DHH theory is almost as accurate as the second-order Percus-Yevick theory at liquid-like densities for both sub- and super-critical temperatures. However, the accuracy of the DHH theory decreases with decreasing density. The correlation functions computed from DHH theory are very similar to those computed from first-order Percus-Yevick theory at low densities. The cavity correlation and bridge functions at low densities computed from these two theories are qualitatively different from results computed from molecular simulations. However, the radial distribution functions computed from all three methods are essentially identical at low densities, indicating that errors in the cavity correlation and bridge functions at low densities cancel out to give high accuracy in the radial distribution function.

  • Název v anglickém jazyce

    A comparison of the correlation functions of the Lennard-Jones fluid for the first-order Duh-Haymet-Henderson closure with molecular simulations

  • Popis výsledku anglicky

    First-order integral equation theories are much more computationally efficient than second-order theories, but the latter are usually much more accurate for computing correlation functions of fluids. We here test the accuracy of the Duh-Haymet-Henderson (DHH) integral equation theory by comparing radial distribution, cavity correlation and bridge functions computed from DHH, first-order and second-order Percus-Yevick theories, with molecular dynamics calculations for the Lennard-Jones fluid. We find that the DHH theory is almost as accurate as the second-order Percus-Yevick theory at liquid-like densities for both sub- and super-critical temperatures. However, the accuracy of the DHH theory decreases with decreasing density. The correlation functions computed from DHH theory are very similar to those computed from first-order Percus-Yevick theory at low densities. The cavity correlation and bridge functions at low densities computed from these two theories are qualitatively different from results computed from molecular simulations. However, the radial distribution functions computed from all three methods are essentially identical at low densities, indicating that errors in the cavity correlation and bridge functions at low densities cancel out to give high accuracy in the radial distribution function.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Molecular Physics

  • ISSN

    0026-8976

  • e-ISSN

  • Svazek periodika

    115

  • Číslo periodika v rámci svazku

    9-12

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    1335-1342

  • Kód UT WoS článku

    000401709200028

  • EID výsledku v databázi Scopus