A comparison of the correlation functions of the Lennard-Jones fluid for the first-order Duh-Haymet-Henderson closure with molecular simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F17%3A43914857" target="_blank" >RIV/60461373:22340/17:43914857 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/full/10.1080/00268976.2017.1292011" target="_blank" >http://www.tandfonline.com/doi/full/10.1080/00268976.2017.1292011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00268976.2017.1292011" target="_blank" >10.1080/00268976.2017.1292011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of the correlation functions of the Lennard-Jones fluid for the first-order Duh-Haymet-Henderson closure with molecular simulations
Popis výsledku v původním jazyce
First-order integral equation theories are much more computationally efficient than second-order theories, but the latter are usually much more accurate for computing correlation functions of fluids. We here test the accuracy of the Duh-Haymet-Henderson (DHH) integral equation theory by comparing radial distribution, cavity correlation and bridge functions computed from DHH, first-order and second-order Percus-Yevick theories, with molecular dynamics calculations for the Lennard-Jones fluid. We find that the DHH theory is almost as accurate as the second-order Percus-Yevick theory at liquid-like densities for both sub- and super-critical temperatures. However, the accuracy of the DHH theory decreases with decreasing density. The correlation functions computed from DHH theory are very similar to those computed from first-order Percus-Yevick theory at low densities. The cavity correlation and bridge functions at low densities computed from these two theories are qualitatively different from results computed from molecular simulations. However, the radial distribution functions computed from all three methods are essentially identical at low densities, indicating that errors in the cavity correlation and bridge functions at low densities cancel out to give high accuracy in the radial distribution function.
Název v anglickém jazyce
A comparison of the correlation functions of the Lennard-Jones fluid for the first-order Duh-Haymet-Henderson closure with molecular simulations
Popis výsledku anglicky
First-order integral equation theories are much more computationally efficient than second-order theories, but the latter are usually much more accurate for computing correlation functions of fluids. We here test the accuracy of the Duh-Haymet-Henderson (DHH) integral equation theory by comparing radial distribution, cavity correlation and bridge functions computed from DHH, first-order and second-order Percus-Yevick theories, with molecular dynamics calculations for the Lennard-Jones fluid. We find that the DHH theory is almost as accurate as the second-order Percus-Yevick theory at liquid-like densities for both sub- and super-critical temperatures. However, the accuracy of the DHH theory decreases with decreasing density. The correlation functions computed from DHH theory are very similar to those computed from first-order Percus-Yevick theory at low densities. The cavity correlation and bridge functions at low densities computed from these two theories are qualitatively different from results computed from molecular simulations. However, the radial distribution functions computed from all three methods are essentially identical at low densities, indicating that errors in the cavity correlation and bridge functions at low densities cancel out to give high accuracy in the radial distribution function.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Molecular Physics
ISSN
0026-8976
e-ISSN
—
Svazek periodika
115
Číslo periodika v rámci svazku
9-12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
1335-1342
Kód UT WoS článku
000401709200028
EID výsledku v databázi Scopus
—