Test of the Duh-Haymet-Henderson theory for mixtures: cavity correlation functions and excess volumes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F19%3A43918360" target="_blank" >RIV/60461373:22340/19:43918360 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/pdf/10.1080/00268976.2019.1656348?needAccess=true" target="_blank" >https://www.tandfonline.com/doi/pdf/10.1080/00268976.2019.1656348?needAccess=true</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00268976.2019.1656348" target="_blank" >10.1080/00268976.2019.1656348</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Test of the Duh-Haymet-Henderson theory for mixtures: cavity correlation functions and excess volumes
Popis výsledku v původním jazyce
The accuracy of the Duh-Haymet-Henderson (DHH) integral equation theory for predicting the cavity correlation functions of mixtures has been tested by comparison with molecular simulations. We have compared the cavity correlation functions, internal energies, and pressures computed for Lennard-Jones model mixtures of Ar/Kr, Ar/Ne, and Ar/Xe with these same quantities computed from the DHH theory and also, for reference, the Percus-Yevick (PY) integral equation theory. We found that DHH gave much better accuracy than PY at high densities. At low densities DHH and PY give essentially identical predictions. We have computed excess volumes for Ar/Kr mixtures at two pressures (10 and 20 MPa) at 132.32 K, for which experimentally derived data are available. The DHH theory predicts the correct trends and is quantitatively more accurate than the PY theory for predicting the excess volumes. We have tested the local optimality of the DHH theory for pure fluids by adding two adjustable parameters to the DHH bridge function expression to see if it is possible to improve the DHH predictions of the cavity correlation function empirically, holding the form of the bridge function constant. We found that no single set of adjustable parameter values could improve the accuracy of DHH over multiple different isotherms. Furthermore, perturbing DHH leads to a decrease in accuracy of the predictions of both the pressure and energy, although small improvements in the cavity correlation functions were achieved. Thus, the DHH theory is locally optimal, given the form of the bridge function. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
Název v anglickém jazyce
Test of the Duh-Haymet-Henderson theory for mixtures: cavity correlation functions and excess volumes
Popis výsledku anglicky
The accuracy of the Duh-Haymet-Henderson (DHH) integral equation theory for predicting the cavity correlation functions of mixtures has been tested by comparison with molecular simulations. We have compared the cavity correlation functions, internal energies, and pressures computed for Lennard-Jones model mixtures of Ar/Kr, Ar/Ne, and Ar/Xe with these same quantities computed from the DHH theory and also, for reference, the Percus-Yevick (PY) integral equation theory. We found that DHH gave much better accuracy than PY at high densities. At low densities DHH and PY give essentially identical predictions. We have computed excess volumes for Ar/Kr mixtures at two pressures (10 and 20 MPa) at 132.32 K, for which experimentally derived data are available. The DHH theory predicts the correct trends and is quantitatively more accurate than the PY theory for predicting the excess volumes. We have tested the local optimality of the DHH theory for pure fluids by adding two adjustable parameters to the DHH bridge function expression to see if it is possible to improve the DHH predictions of the cavity correlation function empirically, holding the form of the bridge function constant. We found that no single set of adjustable parameter values could improve the accuracy of DHH over multiple different isotherms. Furthermore, perturbing DHH leads to a decrease in accuracy of the predictions of both the pressure and energy, although small improvements in the cavity correlation functions were achieved. Thus, the DHH theory is locally optimal, given the form of the bridge function. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Molecular Physics
ISSN
0026-8976
e-ISSN
—
Svazek periodika
117
Číslo periodika v rámci svazku
23-24
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
3623-3631
Kód UT WoS článku
000483265500001
EID výsledku v databázi Scopus
2-s2.0-85071033113