Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of PtOx formation in diesel oxidation catalyst on NO2 yield during driving cycles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F17%3A43915435" target="_blank" >RIV/60461373:22340/17:43915435 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.ces.2016.10.011" target="_blank" >http://dx.doi.org/10.1016/j.ces.2016.10.011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ces.2016.10.011" target="_blank" >10.1016/j.ces.2016.10.011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of PtOx formation in diesel oxidation catalyst on NO2 yield during driving cycles

  • Popis výsledku v původním jazyce

    Operation of a platinum-based diesel oxidation catalyst under lean conditions leads to the partial transformation of metallic Pt sites into platinum oxides (PtOx) with considerably lower NO oxidation rate. The varying NO2 yield depending on PtOx coverage significantly influences the performance of other devices following in a diesel exhaust aftertreatment line: particulate filter (soot oxidation) and SCR or LNT catalyst (NOx reduction). In this paper, we present a global kinetic model of a diesel oxidation catalyst, including PtOx formation induced by reactions with O2 and NO2, PtOx reduction by CO, hydrocarbons and NO, and PtOx thermal decomposition, and use it to reveal the extent of NO2 yield variation in four standard driving cycles for passenger car emission tests: NEDC, FTP, US06 and SC03. During a single driving cycle, the NO2 yield decreases by 3?10% relative to the original level of the reduced catalyst. The PtOx formation is a slow process and stabilizes only after approximately four repeated driving cycles. The stabilized NO2 yield is 7?27% (relative) lower than with the reduced catalyst, depending mainly on the history of operating temperatures. The largest variation is observed around 250?300 °C. At lower temperatures, PtOx are partly reduced during CO and hydrocarbon peaks in the engine exhaust during dynamic operation. At higher temperatures, PtOx start to decompose and NO oxidation becomes limited by equilibrium.

  • Název v anglickém jazyce

    Impact of PtOx formation in diesel oxidation catalyst on NO2 yield during driving cycles

  • Popis výsledku anglicky

    Operation of a platinum-based diesel oxidation catalyst under lean conditions leads to the partial transformation of metallic Pt sites into platinum oxides (PtOx) with considerably lower NO oxidation rate. The varying NO2 yield depending on PtOx coverage significantly influences the performance of other devices following in a diesel exhaust aftertreatment line: particulate filter (soot oxidation) and SCR or LNT catalyst (NOx reduction). In this paper, we present a global kinetic model of a diesel oxidation catalyst, including PtOx formation induced by reactions with O2 and NO2, PtOx reduction by CO, hydrocarbons and NO, and PtOx thermal decomposition, and use it to reveal the extent of NO2 yield variation in four standard driving cycles for passenger car emission tests: NEDC, FTP, US06 and SC03. During a single driving cycle, the NO2 yield decreases by 3?10% relative to the original level of the reduced catalyst. The PtOx formation is a slow process and stabilizes only after approximately four repeated driving cycles. The stabilized NO2 yield is 7?27% (relative) lower than with the reduced catalyst, depending mainly on the history of operating temperatures. The largest variation is observed around 250?300 °C. At lower temperatures, PtOx are partly reduced during CO and hydrocarbon peaks in the engine exhaust during dynamic operation. At higher temperatures, PtOx start to decompose and NO oxidation becomes limited by equilibrium.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20401 - Chemical engineering (plants, products)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Science

  • ISSN

    0009-2509

  • e-ISSN

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    neuveden

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    7

  • Strana od-do

    181-187

  • Kód UT WoS článku

    000389068900018

  • EID výsledku v databázi Scopus