Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F18%3A43916534" target="_blank" >RIV/60461373:22340/18:43916534 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1369703X17303388?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1369703X17303388?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bej.2017.12.004" target="_blank" >10.1016/j.bej.2017.12.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale
Popis výsledku v původním jazyce
Transfer of mammalian cell culture processes across stirred and aerated bioreactor scales is a delicate task, frequently leading to different conditions across scales. To provide a more rational reasoning behind scale-up of mammalian cell cultures, physical characterization of bioreactors with working volumes of 15 mL, 3 L, 270 L, 5′000 L and 15′000 L was carried out using a combination of computational and experimental methods. Maximum hydrodynamic stress, mixing time and oxygen mass transfer coefficients were experimentally determined for all bioreactor scales. Computational fluid dynamic (CFD) simulations based on Reynolds-averaged Navier‐Stokes equation coupled with bubble size population balance equations were used to determine local as well as average hydrodynamic stresses and mass transfer coefficients. Furthermore, mixing times were determined by simulated tracer experiments. All calculations are well in agreement with experimentally measured values, thereby providing a validation of the CFD simulations. This integrated experimental and modeling methodology represents a valuable tool for a Quality-by-Design approach enabling the transfer of mammalian cell cultures in-between reactor scales, even for geometrically different reactors. Additionally, this study provides a rational framework to transfer an operating space developed at small scale to larger scales. © 2017 Elsevier B.V.
Název v anglickém jazyce
Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale
Popis výsledku anglicky
Transfer of mammalian cell culture processes across stirred and aerated bioreactor scales is a delicate task, frequently leading to different conditions across scales. To provide a more rational reasoning behind scale-up of mammalian cell cultures, physical characterization of bioreactors with working volumes of 15 mL, 3 L, 270 L, 5′000 L and 15′000 L was carried out using a combination of computational and experimental methods. Maximum hydrodynamic stress, mixing time and oxygen mass transfer coefficients were experimentally determined for all bioreactor scales. Computational fluid dynamic (CFD) simulations based on Reynolds-averaged Navier‐Stokes equation coupled with bubble size population balance equations were used to determine local as well as average hydrodynamic stresses and mass transfer coefficients. Furthermore, mixing times were determined by simulated tracer experiments. All calculations are well in agreement with experimentally measured values, thereby providing a validation of the CFD simulations. This integrated experimental and modeling methodology represents a valuable tool for a Quality-by-Design approach enabling the transfer of mammalian cell cultures in-between reactor scales, even for geometrically different reactors. Additionally, this study provides a rational framework to transfer an operating space developed at small scale to larger scales. © 2017 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biochemical Engineering Journal
ISSN
1369-703X
e-ISSN
—
Svazek periodika
131
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
84-94
Kód UT WoS článku
000426028600011
EID výsledku v databázi Scopus
2-s2.0-85041128222