Study of hydrodynamic stress in cell culture bioreactors via lattice-Boltzmann CFD simulations supported by micro-probe shear stress method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F24%3A43930921" target="_blank" >RIV/60461373:22340/24:43930921 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1369703X24001244?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1369703X24001244?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bej.2024.109337" target="_blank" >10.1016/j.bej.2024.109337</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Study of hydrodynamic stress in cell culture bioreactors via lattice-Boltzmann CFD simulations supported by micro-probe shear stress method
Popis výsledku v původním jazyce
Mammalian cell cultivation in pharmaceutical industry can last up to units of weeks and requires proper transport of nutrients and oxygen for cell growth and production. Given the long time period, cells experience flow fields from all bioreactor's zones, where the energy dissipation rate (ε) varies substantially. Shear sensitive micro-probes with size comparable to cells and Kolmogorov eddies are used for the determination of the maximum hydrodynamic stress (τmax) in bioreactors. For the very first time, the micro-probe method is applied successfully not only to laboratory (3 L) and pilot scale (80 L and 200 L), but also to industrial production scale bioreactor (12,500 L) with Rushton turbine and pitched-blade (RT-PB) impeller configuration. Experimentally obtained data are used for the validation of comprehensive CFD scale-up study, using the Lattice-Boltzmann large eddy simulation (LB-LES) method. Besides τmax, this work also focuses on the study of mixing time and flow field attributes. © 2024 Elsevier B.V.
Název v anglickém jazyce
Study of hydrodynamic stress in cell culture bioreactors via lattice-Boltzmann CFD simulations supported by micro-probe shear stress method
Popis výsledku anglicky
Mammalian cell cultivation in pharmaceutical industry can last up to units of weeks and requires proper transport of nutrients and oxygen for cell growth and production. Given the long time period, cells experience flow fields from all bioreactor's zones, where the energy dissipation rate (ε) varies substantially. Shear sensitive micro-probes with size comparable to cells and Kolmogorov eddies are used for the determination of the maximum hydrodynamic stress (τmax) in bioreactors. For the very first time, the micro-probe method is applied successfully not only to laboratory (3 L) and pilot scale (80 L and 200 L), but also to industrial production scale bioreactor (12,500 L) with Rushton turbine and pitched-blade (RT-PB) impeller configuration. Experimentally obtained data are used for the validation of comprehensive CFD scale-up study, using the Lattice-Boltzmann large eddy simulation (LB-LES) method. Besides τmax, this work also focuses on the study of mixing time and flow field attributes. © 2024 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biochemical Engineering Journal
ISSN
1369-703X
e-ISSN
1873-295X
Svazek periodika
208
Číslo periodika v rámci svazku
109337
Stát vydavatele periodika
BE - Belgické království
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001333686700001
EID výsledku v databázi Scopus
2-s2.0-85193424507