Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F23%3A43927946" target="_blank" >RIV/60461373:22340/23:43927946 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/biot.202200152" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/biot.202200152</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/biot.202200152" target="_blank" >10.1002/biot.202200152</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes
Popis výsledku v původním jazyce
The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future. © 2022 The Authors. Biotechnology Journal published by Wiley-VCH GmbH.
Název v anglickém jazyce
Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes
Popis výsledku anglicky
The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future. © 2022 The Authors. Biotechnology Journal published by Wiley-VCH GmbH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20401 - Chemical engineering (plants, products)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biotechnology Journal
ISSN
1860-6768
e-ISSN
1860-7314
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000891200000001
EID výsledku v databázi Scopus
2-s2.0-85142896354