Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921138" target="_blank" >RIV/60461373:22340/20:43921138 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1385894720312286?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894720312286?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2020.125236" target="_blank" >10.1016/j.cej.2020.125236</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment
Popis výsledku v původním jazyce
We present an experimental study dealing with the transfer of the enzyme synthesis of cephalexin from a batch arrangement to a continuous-flow microfluidic system with integrated reaction product separation and enzyme recovery. Cephalexin is synthesized by penicillin acylase in a kinetic regime that is characterized by the appearance of a concentration maximum during the enzyme reaction. We determine proper reaction conditions providing a high cephalexin yield and relatively short reaction time by performing a set of batch experiments. Once the residence/reaction time was found, the reaction process is transferred into a continuous mode. We employ an aqueous two-phase system (ATPS) forming two-phase slug flow in a microfluidic capillary as the reaction-separation environment. Such a flow arrangement guarantees a uniform residence time of the reaction mixture in the reaction microcapillary, and it provides in situ extraction of cephalexin. ATPS also offers an easy way for enzyme recycling and addition of fresh reactants as a benefit. We optimized the composition of the ATPS based on phosphates, polyethylene glycol and water so that cephalexin showed a high affinity to one phase and a soluble enzyme to the other phase. Due to the low level of utilization of a soluble catalyst in the continuous flow arrangement, we recycled the reaction phase containing the dissolved enzyme. The recycling loop also contained microdialysis unit for removal of phenylglycine that tends to cause system clogging. We show that the final design of the microfluidic system with recycle can operate continuously for at least 5 h. Our integrated microfluidic platform represents a general solution for enzymatic reactions performed with simultaneous reaction product separation and enzyme recycle.
Název v anglickém jazyce
Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment
Popis výsledku anglicky
We present an experimental study dealing with the transfer of the enzyme synthesis of cephalexin from a batch arrangement to a continuous-flow microfluidic system with integrated reaction product separation and enzyme recovery. Cephalexin is synthesized by penicillin acylase in a kinetic regime that is characterized by the appearance of a concentration maximum during the enzyme reaction. We determine proper reaction conditions providing a high cephalexin yield and relatively short reaction time by performing a set of batch experiments. Once the residence/reaction time was found, the reaction process is transferred into a continuous mode. We employ an aqueous two-phase system (ATPS) forming two-phase slug flow in a microfluidic capillary as the reaction-separation environment. Such a flow arrangement guarantees a uniform residence time of the reaction mixture in the reaction microcapillary, and it provides in situ extraction of cephalexin. ATPS also offers an easy way for enzyme recycling and addition of fresh reactants as a benefit. We optimized the composition of the ATPS based on phosphates, polyethylene glycol and water so that cephalexin showed a high affinity to one phase and a soluble enzyme to the other phase. Due to the low level of utilization of a soluble catalyst in the continuous flow arrangement, we recycled the reaction phase containing the dissolved enzyme. The recycling loop also contained microdialysis unit for removal of phenylglycine that tends to cause system clogging. We show that the final design of the microfluidic system with recycle can operate continuously for at least 5 h. Our integrated microfluidic platform represents a general solution for enzymatic reactions performed with simultaneous reaction product separation and enzyme recycle.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09914S" target="_blank" >GA17-09914S: Reakčně-transportní jevy v integrovaných mikrofluidních bioreaktorech-separátorech pracujících s vodnými dvoufázovými systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
—
Svazek periodika
396
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"125236-1"-"125236-11"
Kód UT WoS článku
000551969200064
EID výsledku v databázi Scopus
2-s2.0-85083865441