Theoretical study on enzyme synthesis of cephalexin in a parallel-flow microreactor combined with electrically driven ATPS microextraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F20%3A43921137" target="_blank" >RIV/60461373:22340/20:43921137 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2020/RE/C9RE00482C#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2020/RE/C9RE00482C#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c9re00482c" target="_blank" >10.1039/c9re00482c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Theoretical study on enzyme synthesis of cephalexin in a parallel-flow microreactor combined with electrically driven ATPS microextraction
Popis výsledku v původním jazyce
Cephalexin is an important beta-lactam antibiotic that is enzymatically synthetized from a nucleophile (7-aminodeacetoxycephalosporanic acid - 7-ADCA) and an acyl donor (phenylglycine methyl ester - PGME). The process is catalyzed by penicillin acylase. Cephalexin is thermodynamically unstable and is typically produced in a kinetic regime. Based on our previous experimental findings and additional batch experiments intended for the estimation of kinetic constants of cephalexin synthesis, we developed a mathematical model of a microfluidic device with two aqueous phases (ATPS) for the simultaneous cephalexin production and its separation from a reaction mixture. This device operates with free enzyme dissolved in one phase and the reactants introduced in the other phase. Because of small characteristic dimensions, the reactants are intensively transported through the interface to the enzyme phase where they are converted to cephalexin. The product then easily returns into the original phase due to a high value of the partition coefficient. The transport can be enhanced by an imposed electric field as the reaction compounds are charged. We studied the effects of four well-controllable parameters on the cephalexin yield: (i) the residence time of the phase introducing the reactants, (ii) the residence time of the phase containing the enzyme, (iii) the applied voltage difference across the interface, (iv) the characteristic dimension of microfluidic chambers. The mathematical model predicts that a cephalexin yield higher than 70% can be achieved in counter-current parallel flow arrangement, which is a result comparable with those obtained in batch experiments. The applied electric field can increase the cephalexin yield by no more than several percent because of the same polarity of 7-ADCA and cephalexin charge numbers. If compared to classical batch reactors, the suggested microreactor-microseparator brings the following benefits: (i) continuous cephalexin synthesis, (ii) effective and continuous separation of cephalexin due to proper partitioning of these species in the used ATPS, (iii) the use of free and highly active enzyme with efficient recyclation. Moreover, the productivity of the suggested microreactor is solely determined by the interfacial area that can be easily provided by thin separating membranes, i.e. no technically demanding numbering up solution is necessary.
Název v anglickém jazyce
Theoretical study on enzyme synthesis of cephalexin in a parallel-flow microreactor combined with electrically driven ATPS microextraction
Popis výsledku anglicky
Cephalexin is an important beta-lactam antibiotic that is enzymatically synthetized from a nucleophile (7-aminodeacetoxycephalosporanic acid - 7-ADCA) and an acyl donor (phenylglycine methyl ester - PGME). The process is catalyzed by penicillin acylase. Cephalexin is thermodynamically unstable and is typically produced in a kinetic regime. Based on our previous experimental findings and additional batch experiments intended for the estimation of kinetic constants of cephalexin synthesis, we developed a mathematical model of a microfluidic device with two aqueous phases (ATPS) for the simultaneous cephalexin production and its separation from a reaction mixture. This device operates with free enzyme dissolved in one phase and the reactants introduced in the other phase. Because of small characteristic dimensions, the reactants are intensively transported through the interface to the enzyme phase where they are converted to cephalexin. The product then easily returns into the original phase due to a high value of the partition coefficient. The transport can be enhanced by an imposed electric field as the reaction compounds are charged. We studied the effects of four well-controllable parameters on the cephalexin yield: (i) the residence time of the phase introducing the reactants, (ii) the residence time of the phase containing the enzyme, (iii) the applied voltage difference across the interface, (iv) the characteristic dimension of microfluidic chambers. The mathematical model predicts that a cephalexin yield higher than 70% can be achieved in counter-current parallel flow arrangement, which is a result comparable with those obtained in batch experiments. The applied electric field can increase the cephalexin yield by no more than several percent because of the same polarity of 7-ADCA and cephalexin charge numbers. If compared to classical batch reactors, the suggested microreactor-microseparator brings the following benefits: (i) continuous cephalexin synthesis, (ii) effective and continuous separation of cephalexin due to proper partitioning of these species in the used ATPS, (iii) the use of free and highly active enzyme with efficient recyclation. Moreover, the productivity of the suggested microreactor is solely determined by the interfacial area that can be easily provided by thin separating membranes, i.e. no technically demanding numbering up solution is necessary.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-09914S" target="_blank" >GA17-09914S: Reakčně-transportní jevy v integrovaných mikrofluidních bioreaktorech-separátorech pracujících s vodnými dvoufázovými systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reaction Chemistry & Engineering
ISSN
2058-9883
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
570-583
Kód UT WoS článku
000519210200010
EID výsledku v databázi Scopus
2-s2.0-85081140247