Machine Learning in Classification of the Wax Structure of Breathing Openings on Leaves Affected by Air Pollution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F21%3A43921007" target="_blank" >RIV/60461373:22340/21:43921007 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00347486
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-57802-2_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-57802-2_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-57802-2_19" target="_blank" >10.1007/978-3-030-57802-2_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning in Classification of the Wax Structure of Breathing Openings on Leaves Affected by Air Pollution
Popis výsledku v původním jazyce
Texture analysis and classification of image components be- long to common problems of the interdisciplinary area of digital sig- nal and image processing. The paper is devoted to the pattern matrix construction using features evaluated by the discrete Fourier transform (DFT) or the discrete wavelet transform (DWT) using the relative power in selected frequency bands or scale levels, respectively. Image features are then used to recognize groups of similar pattern vectors by self- organizing neural networks forming a mathematical tool for cluster anal- ysis. Further classification methods including the decision tree, support vector machine, nearest neighbour method and neural networks are then applied for construction of specific models and evaluation of their accu- racy and cross validation errors. The proposed algorithm is applied for analysis of given microscopic images representing wax structures cover- ing breathing openings on leaves affected by environmental pollution in different locations. The classification accuracy depends upon the method used and it is higher than 92% for all experiments.
Název v anglickém jazyce
Machine Learning in Classification of the Wax Structure of Breathing Openings on Leaves Affected by Air Pollution
Popis výsledku anglicky
Texture analysis and classification of image components be- long to common problems of the interdisciplinary area of digital sig- nal and image processing. The paper is devoted to the pattern matrix construction using features evaluated by the discrete Fourier transform (DFT) or the discrete wavelet transform (DWT) using the relative power in selected frequency bands or scale levels, respectively. Image features are then used to recognize groups of similar pattern vectors by self- organizing neural networks forming a mathematical tool for cluster anal- ysis. Further classification methods including the decision tree, support vector machine, nearest neighbour method and neural networks are then applied for construction of specific models and evaluation of their accu- racy and cross validation errors. The proposed algorithm is applied for analysis of given microscopic images representing wax structures cover- ing breathing openings on leaves affected by environmental pollution in different locations. The classification accuracy depends upon the method used and it is higher than 92% for all experiments.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAIN19007" target="_blank" >LTAIN19007: Vývoj pokročilých výpočetních algoritmů pro objektivní posouzení pooperační rehabilitace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020)
ISBN
978-3-030-57801-5
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
8
Strana od-do
199-206
Název nakladatele
Springer International Publishing Switzerland
Místo vydání
Cham
Místo konání akce
BURGOS
Datum konání akce
16. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—