A New Class of Single-Material, Non-Reciprocal Microactuators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43924686" target="_blank" >RIV/60461373:22340/22:43924686 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388963:_____/23:00566563
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/marc.202200842" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/marc.202200842</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/marc.202200842" target="_blank" >10.1002/marc.202200842</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Class of Single-Material, Non-Reciprocal Microactuators
Popis výsledku v původním jazyce
A crucial component in designing soft actuating structures with controllable shape changes is programming internal, mismatching stresses. In this work, a new paradigm for achieving anisotropic dynamics between isotropic end-states—yielding a non-reciprocal shrinking/swelling response over a full actuation cycle—in a microscale actuator made of a single material, purely through microscale design is demonstrated. Anisotropic dynamics is achieved by incorporating micro-sized pores into certain segments of the structures; by arranging porous and non-porous segments (specifically, struts) into a 2D hexagonally-shaped microscopic poly(N-isopropyl acrylamide) hydrogel particle, the rate of isotropic shrinking/swelling in the structure is locally modulated, generating global anisotropic, non-reciprocal, dynamics. A simple mathematical model is introduced that reveals the physics that underlies these dynamics. This design has the potential to be used as a foundational tool for inducing non-reciprocal actuation cycles with a single material structure, and enables new possibilities in producing customized soft actuators and modular anisotropic metamaterials for a range of real-world applications, such as artificial cilia.
Název v anglickém jazyce
A New Class of Single-Material, Non-Reciprocal Microactuators
Popis výsledku anglicky
A crucial component in designing soft actuating structures with controllable shape changes is programming internal, mismatching stresses. In this work, a new paradigm for achieving anisotropic dynamics between isotropic end-states—yielding a non-reciprocal shrinking/swelling response over a full actuation cycle—in a microscale actuator made of a single material, purely through microscale design is demonstrated. Anisotropic dynamics is achieved by incorporating micro-sized pores into certain segments of the structures; by arranging porous and non-porous segments (specifically, struts) into a 2D hexagonally-shaped microscopic poly(N-isopropyl acrylamide) hydrogel particle, the rate of isotropic shrinking/swelling in the structure is locally modulated, generating global anisotropic, non-reciprocal, dynamics. A simple mathematical model is introduced that reveals the physics that underlies these dynamics. This design has the potential to be used as a foundational tool for inducing non-reciprocal actuation cycles with a single material structure, and enables new possibilities in producing customized soft actuators and modular anisotropic metamaterials for a range of real-world applications, such as artificial cilia.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MACROMOLECULAR RAPID COMMUNICATIONS
ISSN
1022-1336
e-ISSN
1521-3927
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
14.12.2022
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
nestrankovano
Kód UT WoS článku
000903705100001
EID výsledku v databázi Scopus
—