Mirrored mixture PDF models for scientific image modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F22%3A43925510" target="_blank" >RIV/60461373:22340/22:43925510 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00350430
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11760-021-01944-z" target="_blank" >https://link.springer.com/article/10.1007/s11760-021-01944-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11760-021-01944-z" target="_blank" >10.1007/s11760-021-01944-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mirrored mixture PDF models for scientific image modelling
Popis výsledku v původním jazyce
This paper deals with the modelling of high bit-depth images acquired by astronomical cameras using the discrete wavelet transform and the undecimated discrete wavelet transform for image representation. The probability density function (PDF) model parameters are estimated using the expectation-maximization (EM) algorithm and the method of moments. As proposed in this paper, the task of estimating the overall PDF model parameters can be simplified by so-called mirroring of the initial model which is estimated only for those wavelet coefficients that are greater than or equal to zero. In the case of the EM algorithm, this technique significantly reduces the computational cost of the model fitting algorithm. In our experiments, we achieved a reduction of more than 70%. In the case of the method of moments, this technique simplifies a system of moment equations. Three main PDF models are presented here: firstly, the mirrored mixture of a half-normal distribution and an exponential distribution, secondly, the mirrored mixture of two exponential distributions, and finally, the mirrored mixture of two half-normal distributions. Performance of these models is evaluated on three sets of astronomical images and also on artificial data using the Jeffrey divergence metric. Overall, the mirrored mixture of a half-normal and an exponential distribution overcomes the commonly used GLM (generalized Laplacian model) and also the other studied models. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Název v anglickém jazyce
Mirrored mixture PDF models for scientific image modelling
Popis výsledku anglicky
This paper deals with the modelling of high bit-depth images acquired by astronomical cameras using the discrete wavelet transform and the undecimated discrete wavelet transform for image representation. The probability density function (PDF) model parameters are estimated using the expectation-maximization (EM) algorithm and the method of moments. As proposed in this paper, the task of estimating the overall PDF model parameters can be simplified by so-called mirroring of the initial model which is estimated only for those wavelet coefficients that are greater than or equal to zero. In the case of the EM algorithm, this technique significantly reduces the computational cost of the model fitting algorithm. In our experiments, we achieved a reduction of more than 70%. In the case of the method of moments, this technique simplifies a system of moment equations. Three main PDF models are presented here: firstly, the mirrored mixture of a half-normal distribution and an exponential distribution, secondly, the mirrored mixture of two exponential distributions, and finally, the mirrored mixture of two half-normal distributions. Performance of these models is evaluated on three sets of astronomical images and also on artificial data using the Jeffrey divergence metric. Overall, the mirrored mixture of a half-normal and an exponential distribution overcomes the commonly used GLM (generalized Laplacian model) and also the other studied models. © 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05840S" target="_blank" >GA17-05840S: Multikriteriální optimalizace modelů prostorově variantních zobrazovacích systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Signal, Image and Video Processing
ISSN
1863-1703
e-ISSN
1863-1711
Svazek periodika
16
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
385-393
Kód UT WoS článku
000660811100002
EID výsledku v databázi Scopus
2-s2.0-85107821204