A Utilization of GMM for Scientific Images Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F09%3A00022103" target="_blank" >RIV/60461373:22340/09:00022103 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Utilization of GMM for Scientific Images Modeling
Popis výsledku v původním jazyce
This paper deals with modeling of scientific and multimedia images in the wavelet domain. Images transformed into wavelet domain have a special shape of probability density function (PDF). Thus wavelet coefficients PDFs are usually modeled using generalized Laplacian PDF model (GLM), which is characterized by two parameters. The wavelet coefficients modeling can be more efficient, while the Gaussian mixture model (GMM) isutilized. GMM model is given by addition of at least two Gaussian PDFs with different standard deviations. The equation system derived by moment method for GMM model parameters estimation will be presented. The equation system was derived for an addition of two GMM models. So it is suitable for advanced denoising systems, where an addition of two GMM random variables is considered (e.g. dark current).
Název v anglickém jazyce
A Utilization of GMM for Scientific Images Modeling
Popis výsledku anglicky
This paper deals with modeling of scientific and multimedia images in the wavelet domain. Images transformed into wavelet domain have a special shape of probability density function (PDF). Thus wavelet coefficients PDFs are usually modeled using generalized Laplacian PDF model (GLM), which is characterized by two parameters. The wavelet coefficients modeling can be more efficient, while the Gaussian mixture model (GMM) isutilized. GMM model is given by addition of at least two Gaussian PDFs with different standard deviations. The equation system derived by moment method for GMM model parameters estimation will be presented. The equation system was derived for an addition of two GMM models. So it is suitable for advanced denoising systems, where an addition of two GMM random variables is considered (e.g. dark current).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Applications of Digital Image Processing XXXII
ISBN
978-0-8194-7733-0
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
SPIE - Optics for Quality of Life
Místo vydání
Bellingham, WA
Místo konání akce
San Diego
Datum konání akce
2. 8. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—