Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermodynamic Properties and Phase Equilibria of Dihydrolevoglucosenone and Its Mixtures with Hydrocarbons

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22340%2F23%3A43927730" target="_blank" >RIV/60461373:22340/23:43927730 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acs.jced.3c00461" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jced.3c00461</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jced.3c00461" target="_blank" >10.1021/acs.jced.3c00461</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermodynamic Properties and Phase Equilibria of Dihydrolevoglucosenone and Its Mixtures with Hydrocarbons

  • Popis výsledku v původním jazyce

    Thermodynamic and computational study of a biomass-derived solvent dihydrolevoglucosenone (DLG) and its mixtures with hydrocarbons is presented in this work. Density and dynamic viscosity of DLG were measured within the temperature range of 293.15-353.15 K. Phase behavior of DLG above 183 K was analyzed using heat-flux differential scanning calorimetry, providing data on its melting temperature and enthalpy of fusion. Heat capacity of DLG was measured using a Tian-Calvet calorimeter at temperatures between 253 and 353 K. Two static apparatuses were utilized to measure the vapor pressure of DLG in the temperature range of 253-363 K. A thermodynamically consistent description was achieved by simultaneous correlation of experimental values of phase behavior, heat capacities, vapor pressures, and theoretical calculations. Liquid-liquid equilibria (LLE) data in four binary DLG and hydrocarbons (n-hexane, cyclohexane, n-decane, and n-tetradecane) systems were determined using a combination of volumetric, cloud-point, and direct analytical methods. The obtained LLE data were employed to thermodynamically describe the binary mixtures using the nonrandom two-liquid (NRTL) equation and estimate critical points using the Extended-Scaling Law (ESL) equation. Furthermore, the pure-component data developed in this work were used to determine two new sets of parameters for DLG within the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state: one with and one without the explicit inclusion of the dipole moment of DLG in the model theory. In addition, one more set of parameters for DLG developed earlier by other authors was included. PC-SAFT with all three parameter sets was then examined in terms of its performance regarding the description of the LLE in the systems studied. Both correlations (with optimized kij) and pure predictions (kij = 0) were considered and discussed. Interestingly, it appears that the better PC-SAFT with a particular parameter set for DLG performs for the properties of pure DLG, the worse are the results for the LLE in the DLG + hydrocarbon systems. For example, PC-SAFT with the nonpolar parameters for DLG provided more accurate results for pure DLG than its polar counterparts, while it quantitatively failed for the LLE. © 2023 The Authors. Published by American Chemical Society.

  • Název v anglickém jazyce

    Thermodynamic Properties and Phase Equilibria of Dihydrolevoglucosenone and Its Mixtures with Hydrocarbons

  • Popis výsledku anglicky

    Thermodynamic and computational study of a biomass-derived solvent dihydrolevoglucosenone (DLG) and its mixtures with hydrocarbons is presented in this work. Density and dynamic viscosity of DLG were measured within the temperature range of 293.15-353.15 K. Phase behavior of DLG above 183 K was analyzed using heat-flux differential scanning calorimetry, providing data on its melting temperature and enthalpy of fusion. Heat capacity of DLG was measured using a Tian-Calvet calorimeter at temperatures between 253 and 353 K. Two static apparatuses were utilized to measure the vapor pressure of DLG in the temperature range of 253-363 K. A thermodynamically consistent description was achieved by simultaneous correlation of experimental values of phase behavior, heat capacities, vapor pressures, and theoretical calculations. Liquid-liquid equilibria (LLE) data in four binary DLG and hydrocarbons (n-hexane, cyclohexane, n-decane, and n-tetradecane) systems were determined using a combination of volumetric, cloud-point, and direct analytical methods. The obtained LLE data were employed to thermodynamically describe the binary mixtures using the nonrandom two-liquid (NRTL) equation and estimate critical points using the Extended-Scaling Law (ESL) equation. Furthermore, the pure-component data developed in this work were used to determine two new sets of parameters for DLG within the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state: one with and one without the explicit inclusion of the dipole moment of DLG in the model theory. In addition, one more set of parameters for DLG developed earlier by other authors was included. PC-SAFT with all three parameter sets was then examined in terms of its performance regarding the description of the LLE in the systems studied. Both correlations (with optimized kij) and pure predictions (kij = 0) were considered and discussed. Interestingly, it appears that the better PC-SAFT with a particular parameter set for DLG performs for the properties of pure DLG, the worse are the results for the LLE in the DLG + hydrocarbon systems. For example, PC-SAFT with the nonpolar parameters for DLG provided more accurate results for pure DLG than its polar counterparts, while it quantitatively failed for the LLE. © 2023 The Authors. Published by American Chemical Society.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF CHEMICAL AND ENGINEERING DATA

  • ISSN

    0021-9568

  • e-ISSN

    1520-5134

  • Svazek periodika

    68

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    3361-3376

  • Kód UT WoS článku

    001141580900001

  • EID výsledku v databázi Scopus

    2-s2.0-85178618044