Space Versus Time: Unimodular Versus Non-Unimodular Projective Ring Geometries?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F10%3A00336549" target="_blank" >RIV/61388955:_____/10:00336549 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Space Versus Time: Unimodular Versus Non-Unimodular Projective Ring Geometries?
Popis výsledku v původním jazyce
Both the fundamental difference and intricate connection between time and space are demonstrated, and even the ring geometrical germs of the observed macroscopic dimensionality (3+1) of space-time and the arrow of time are outlined. Finite projective (lattice) geometries defined over rings instead of fields have recently been recognized to be of great importance for quantum information theory. We believe that there is much more potential hidden in these geometries to be unleashed for physics. There exist specific rings over which the projective spaces feature two principally distinct kinds of basic constituents (points and/or higher-rank linear subspaces), intricately interwoven with each other ? unimodular and nonunimodular. We conjecture that these two projective "degrees of freedom" can rudimentary be associated with spatial and temporal dimensions of physics, respectively. Our hypothesis is illustrated on the projective line over the smallest ring of ternions.
Název v anglickém jazyce
Space Versus Time: Unimodular Versus Non-Unimodular Projective Ring Geometries?
Popis výsledku anglicky
Both the fundamental difference and intricate connection between time and space are demonstrated, and even the ring geometrical germs of the observed macroscopic dimensionality (3+1) of space-time and the arrow of time are outlined. Finite projective (lattice) geometries defined over rings instead of fields have recently been recognized to be of great importance for quantum information theory. We believe that there is much more potential hidden in these geometries to be unleashed for physics. There exist specific rings over which the projective spaces feature two principally distinct kinds of basic constituents (points and/or higher-rank linear subspaces), intricately interwoven with each other ? unimodular and nonunimodular. We conjecture that these two projective "degrees of freedom" can rudimentary be associated with spatial and temporal dimensions of physics, respectively. Our hypothesis is illustrated on the projective line over the smallest ring of ternions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cosmology
ISSN
2159-063X
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
-
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—